Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100659412> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3100659412 endingPage "397" @default.
- W3100659412 startingPage "386" @default.
- W3100659412 abstract "The purpose of this study is to establish a system for the prediction of the pests’ risk level in a roses greenhouse by applying Artificial Neural Networks (ANNs) and an Adaptive Neuro-Fuzzy Inference System (ANFIS). Pests in roses greenhouses are known to be fatal to plants if not detected at a premature stage. Early detection could avoid huge agronomic and economic losses. Though, it could be a difficult task to achieve. The complexities arising from the interactions between variables influencing the development could be a barrier to fulfill the previously mentioned task. The output of the developed system represents the next day?s risk level of Western flower Thrips (WFT) (Frankliniella occidentalis) in a roses greenhouse. Four explanatory variables, such as internal temperature, internal humidity, today’s pest risk level and human intervention have been considered for this estimation. The main contributions of this study are three fold; providing a daily estimate WFT risk level, reducing the use of pesticides and finally mitigating yield loss. The obtained results were compared to each other and to real data. The performance of the models has been evaluated by 3 statistical indicators. Numerical results showed conspicuous performance of both models, indicating their efficiency for pest monitoring. The novelty associated with the system is the creation of decision support tool for daily risk assessment of WFT. Relying on a small number of variables, this system is a monitoring tool which contributes to help farmers early reveal warning signs. In addition, this is a first attempt to employ ANNs and ANFIS for the prediction of WFT." @default.
- W3100659412 created "2020-11-23" @default.
- W3100659412 creator A5052034689 @default.
- W3100659412 creator A5065292747 @default.
- W3100659412 creator A5077806040 @default.
- W3100659412 date "2021-09-01" @default.
- W3100659412 modified "2023-10-12" @default.
- W3100659412 title "Forecasting pest risk level in roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks" @default.
- W3100659412 cites W1492896485 @default.
- W3100659412 cites W1585304593 @default.
- W3100659412 cites W1816638112 @default.
- W3100659412 cites W1989885204 @default.
- W3100659412 cites W1995341919 @default.
- W3100659412 cites W2010124182 @default.
- W3100659412 cites W2019207321 @default.
- W3100659412 cites W2019317510 @default.
- W3100659412 cites W2047825713 @default.
- W3100659412 cites W2049604804 @default.
- W3100659412 cites W2074084856 @default.
- W3100659412 cites W2079325629 @default.
- W3100659412 cites W2133321814 @default.
- W3100659412 cites W2148120521 @default.
- W3100659412 cites W2152788729 @default.
- W3100659412 cites W2155482699 @default.
- W3100659412 cites W2178771410 @default.
- W3100659412 cites W2188133143 @default.
- W3100659412 cites W2346572636 @default.
- W3100659412 cites W2386192529 @default.
- W3100659412 cites W2511016831 @default.
- W3100659412 cites W2533491448 @default.
- W3100659412 cites W2580188272 @default.
- W3100659412 cites W2601517879 @default.
- W3100659412 cites W2944189100 @default.
- W3100659412 cites W2968608758 @default.
- W3100659412 cites W3012334084 @default.
- W3100659412 doi "https://doi.org/10.1016/j.inpa.2020.10.005" @default.
- W3100659412 hasPublicationYear "2021" @default.
- W3100659412 type Work @default.
- W3100659412 sameAs 3100659412 @default.
- W3100659412 citedByCount "9" @default.
- W3100659412 countsByYear W31006594122021 @default.
- W3100659412 countsByYear W31006594122022 @default.
- W3100659412 countsByYear W31006594122023 @default.
- W3100659412 crossrefType "journal-article" @default.
- W3100659412 hasAuthorship W3100659412A5052034689 @default.
- W3100659412 hasAuthorship W3100659412A5065292747 @default.
- W3100659412 hasAuthorship W3100659412A5077806040 @default.
- W3100659412 hasBestOaLocation W31006594121 @default.
- W3100659412 hasConcept C119857082 @default.
- W3100659412 hasConcept C127413603 @default.
- W3100659412 hasConcept C144027150 @default.
- W3100659412 hasConcept C154945302 @default.
- W3100659412 hasConcept C186108316 @default.
- W3100659412 hasConcept C195975749 @default.
- W3100659412 hasConcept C201995342 @default.
- W3100659412 hasConcept C2780451532 @default.
- W3100659412 hasConcept C32198211 @default.
- W3100659412 hasConcept C41008148 @default.
- W3100659412 hasConcept C50644808 @default.
- W3100659412 hasConcept C58166 @default.
- W3100659412 hasConcept C86803240 @default.
- W3100659412 hasConcept C88463610 @default.
- W3100659412 hasConceptScore W3100659412C119857082 @default.
- W3100659412 hasConceptScore W3100659412C127413603 @default.
- W3100659412 hasConceptScore W3100659412C144027150 @default.
- W3100659412 hasConceptScore W3100659412C154945302 @default.
- W3100659412 hasConceptScore W3100659412C186108316 @default.
- W3100659412 hasConceptScore W3100659412C195975749 @default.
- W3100659412 hasConceptScore W3100659412C201995342 @default.
- W3100659412 hasConceptScore W3100659412C2780451532 @default.
- W3100659412 hasConceptScore W3100659412C32198211 @default.
- W3100659412 hasConceptScore W3100659412C41008148 @default.
- W3100659412 hasConceptScore W3100659412C50644808 @default.
- W3100659412 hasConceptScore W3100659412C58166 @default.
- W3100659412 hasConceptScore W3100659412C86803240 @default.
- W3100659412 hasConceptScore W3100659412C88463610 @default.
- W3100659412 hasIssue "3" @default.
- W3100659412 hasLocation W31006594121 @default.
- W3100659412 hasLocation W31006594122 @default.
- W3100659412 hasLocation W31006594123 @default.
- W3100659412 hasOpenAccess W3100659412 @default.
- W3100659412 hasPrimaryLocation W31006594121 @default.
- W3100659412 hasRelatedWork W2114654021 @default.
- W3100659412 hasRelatedWork W2263529430 @default.
- W3100659412 hasRelatedWork W2389800468 @default.
- W3100659412 hasRelatedWork W2392430664 @default.
- W3100659412 hasRelatedWork W2763641192 @default.
- W3100659412 hasRelatedWork W2901944323 @default.
- W3100659412 hasRelatedWork W3018564381 @default.
- W3100659412 hasRelatedWork W4206419925 @default.
- W3100659412 hasRelatedWork W4379177019 @default.
- W3100659412 hasRelatedWork W2150377753 @default.
- W3100659412 hasVolume "8" @default.
- W3100659412 isParatext "false" @default.
- W3100659412 isRetracted "false" @default.
- W3100659412 magId "3100659412" @default.
- W3100659412 workType "article" @default.