Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100671445> ?p ?o ?g. }
- W3100671445 abstract "We provide a contour integral formula for the exact partition function of $$ mathcal{N} $$ = 2 supersymmetric U(N) gauge theories on compact toric four-manifolds by means of supersymmetric localisation. We perform the explicit evaluation of the contour integral for U(2) $$ mathcal{N} $$ = 2∗ theory on $$ {mathrm{mathbb{P}}}^2 $$ for all instanton numbers. In the zero mass case, corresponding to the $$ mathcal{N} $$ = 4 supersymmetric gauge theory, we obtain the generating function of the Euler characteristics of instanton moduli spaces in terms of mock-modular forms. In the decoupling limit of infinite mass we find that the generating function of local and surface observables computes equivariant Donaldson invariants, thus proving in this case a longstanding conjecture by N. Nekrasov. In the case of vanishing first Chern class the resulting equivariant Donaldson polynomials are new." @default.
- W3100671445 created "2020-11-23" @default.
- W3100671445 creator A5024536407 @default.
- W3100671445 creator A5032318124 @default.
- W3100671445 creator A5053242235 @default.
- W3100671445 creator A5059687237 @default.
- W3100671445 date "2016-07-01" @default.
- W3100671445 modified "2023-10-03" @default.
- W3100671445 title "Exact results for N $$ mathcal{N} $$ = 2 supersymmetric gauge theories on compact toric manifolds and equivariant Donaldson invariants" @default.
- W3100671445 cites W1496801598 @default.
- W3100671445 cites W1899884888 @default.
- W3100671445 cites W1963759291 @default.
- W3100671445 cites W1971414784 @default.
- W3100671445 cites W1975628350 @default.
- W3100671445 cites W1986528032 @default.
- W3100671445 cites W1997150457 @default.
- W3100671445 cites W2034958095 @default.
- W3100671445 cites W2039295173 @default.
- W3100671445 cites W2048586616 @default.
- W3100671445 cites W2057712419 @default.
- W3100671445 cites W2059619557 @default.
- W3100671445 cites W2060111284 @default.
- W3100671445 cites W2071453039 @default.
- W3100671445 cites W2072179541 @default.
- W3100671445 cites W2085855382 @default.
- W3100671445 cites W2087482303 @default.
- W3100671445 cites W2089832766 @default.
- W3100671445 cites W2102735961 @default.
- W3100671445 cites W2108317629 @default.
- W3100671445 cites W2113894293 @default.
- W3100671445 cites W2116163539 @default.
- W3100671445 cites W2116754113 @default.
- W3100671445 cites W2147795499 @default.
- W3100671445 cites W2148856336 @default.
- W3100671445 cites W2164191715 @default.
- W3100671445 cites W2164252329 @default.
- W3100671445 cites W2330576716 @default.
- W3100671445 cites W2566917795 @default.
- W3100671445 cites W2598139253 @default.
- W3100671445 cites W2600532727 @default.
- W3100671445 cites W2952105245 @default.
- W3100671445 cites W2952523142 @default.
- W3100671445 cites W2952941332 @default.
- W3100671445 cites W2963309327 @default.
- W3100671445 cites W2993428955 @default.
- W3100671445 cites W3098156933 @default.
- W3100671445 cites W3098269595 @default.
- W3100671445 cites W3099747105 @default.
- W3100671445 cites W3099876907 @default.
- W3100671445 cites W3100399351 @default.
- W3100671445 cites W3100734007 @default.
- W3100671445 cites W3100841022 @default.
- W3100671445 cites W3100982255 @default.
- W3100671445 cites W3102310172 @default.
- W3100671445 cites W3102547706 @default.
- W3100671445 cites W3103109706 @default.
- W3100671445 cites W3103334852 @default.
- W3100671445 cites W3103357432 @default.
- W3100671445 cites W3104908719 @default.
- W3100671445 cites W3105047012 @default.
- W3100671445 cites W3105270489 @default.
- W3100671445 cites W3105340021 @default.
- W3100671445 cites W3105584888 @default.
- W3100671445 cites W3105846403 @default.
- W3100671445 cites W3105873051 @default.
- W3100671445 doi "https://doi.org/10.1007/jhep07(2016)023" @default.
- W3100671445 hasPublicationYear "2016" @default.
- W3100671445 type Work @default.
- W3100671445 sameAs 3100671445 @default.
- W3100671445 citedByCount "30" @default.
- W3100671445 countsByYear W31006714452016 @default.
- W3100671445 countsByYear W31006714452017 @default.
- W3100671445 countsByYear W31006714452018 @default.
- W3100671445 countsByYear W31006714452019 @default.
- W3100671445 countsByYear W31006714452020 @default.
- W3100671445 countsByYear W31006714452021 @default.
- W3100671445 countsByYear W31006714452022 @default.
- W3100671445 countsByYear W31006714452023 @default.
- W3100671445 crossrefType "journal-article" @default.
- W3100671445 hasAuthorship W3100671445A5024536407 @default.
- W3100671445 hasAuthorship W3100671445A5032318124 @default.
- W3100671445 hasAuthorship W3100671445A5053242235 @default.
- W3100671445 hasAuthorship W3100671445A5059687237 @default.
- W3100671445 hasBestOaLocation W31006714451 @default.
- W3100671445 hasConcept C121332964 @default.
- W3100671445 hasConcept C125198404 @default.
- W3100671445 hasConcept C127413603 @default.
- W3100671445 hasConcept C133731056 @default.
- W3100671445 hasConcept C171036898 @default.
- W3100671445 hasConcept C181830111 @default.
- W3100671445 hasConcept C202444582 @default.
- W3100671445 hasConcept C205606062 @default.
- W3100671445 hasConcept C2778401447 @default.
- W3100671445 hasConcept C2780990831 @default.
- W3100671445 hasConcept C33923547 @default.
- W3100671445 hasConcept C37914503 @default.
- W3100671445 hasConcept C62520636 @default.
- W3100671445 hasConcept C65266758 @default.
- W3100671445 hasConcept C73373263 @default.
- W3100671445 hasConcept C75764964 @default.