Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100681411> ?p ?o ?g. }
- W3100681411 endingPage "e24286" @default.
- W3100681411 startingPage "e24286" @default.
- W3100681411 abstract "Background The emergence of SARS-CoV-2, the virus that causes COVID-19, has led to a global pandemic. The United States has been severely affected, accounting for the most COVID-19 cases and deaths worldwide. Without a coordinated national public health plan informed by surveillance with actionable metrics, the United States has been ineffective at preventing and mitigating the escalating COVID-19 pandemic. Existing surveillance has incomplete ascertainment and is limited by the use of standard surveillance metrics. Although many COVID-19 data sources track infection rates, informing prevention requires capturing the relevant dynamics of the pandemic. Objective The aim of this study is to develop dynamic metrics for public health surveillance that can inform worldwide COVID-19 prevention efforts. Advanced surveillance techniques are essential to inform public health decision making and to identify where and when corrective action is required to prevent outbreaks. Methods Using a longitudinal trend analysis study design, we extracted COVID-19 data from global public health registries. We used an empirical difference equation to measure daily case numbers for our use case in 50 US states and the District of Colombia as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results Examination of the United States and state data demonstrated that most US states are experiencing outbreaks as measured by these new metrics of speed, acceleration, jerk, and persistence. Larger US states have high COVID-19 caseloads as a function of population size, density, and deficits in adherence to public health guidelines early in the epidemic, and other states have alarming rates of speed, acceleration, jerk, and 7-day persistence in novel infections. North and South Dakota have had the highest rates of COVID-19 transmission combined with positive acceleration, jerk, and 7-day persistence. Wisconsin and Illinois also have alarming indicators and already lead the nation in daily new COVID-19 infections. As the United States enters its third wave of COVID-19, all 50 states and the District of Colombia have positive rates of speed between 7.58 (Hawaii) and 175.01 (North Dakota), and persistence, ranging from 4.44 (Vermont) to 195.35 (North Dakota) new infections per 100,000 people. Conclusions Standard surveillance techniques such as daily and cumulative infections and deaths are helpful but only provide a static view of what has already occurred in the pandemic and are less helpful in prevention. Public health policy that is informed by dynamic surveillance can shift the country from reacting to COVID-19 transmissions to being proactive and taking corrective action when indicators of speed, acceleration, jerk, and persistence remain positive week over week. Implicit within our dynamic surveillance is an early warning system that indicates when there is problematic growth in COVID-19 transmissions as well as signals when growth will become explosive without action. A public health approach that focuses on prevention can prevent major outbreaks in addition to endorsing effective public health policies. Moreover, subnational analyses on the dynamics of the pandemic allow us to zero in on where transmissions are increasing, meaning corrective action can be applied with precision in problematic areas. Dynamic public health surveillance can inform specific geographies where quarantines are necessary while preserving the economy in other US areas." @default.
- W3100681411 created "2020-11-23" @default.
- W3100681411 creator A5003745326 @default.
- W3100681411 creator A5011685760 @default.
- W3100681411 creator A5019405556 @default.
- W3100681411 creator A5024981232 @default.
- W3100681411 creator A5027252372 @default.
- W3100681411 creator A5029767891 @default.
- W3100681411 creator A5032147253 @default.
- W3100681411 creator A5035079245 @default.
- W3100681411 creator A5038171056 @default.
- W3100681411 creator A5041036157 @default.
- W3100681411 creator A5045888021 @default.
- W3100681411 creator A5047738932 @default.
- W3100681411 creator A5067644316 @default.
- W3100681411 creator A5068293317 @default.
- W3100681411 date "2020-12-03" @default.
- W3100681411 modified "2023-10-14" @default.
- W3100681411 title "Dynamic Public Health Surveillance to Track and Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study" @default.
- W3100681411 cites W1525193327 @default.
- W3100681411 cites W1947353191 @default.
- W3100681411 cites W2160542585 @default.
- W3100681411 cites W2803723462 @default.
- W3100681411 cites W3003465021 @default.
- W3100681411 cites W3008443627 @default.
- W3100681411 cites W3009126962 @default.
- W3100681411 cites W3009765141 @default.
- W3100681411 cites W3010326174 @default.
- W3100681411 cites W3010714477 @default.
- W3100681411 cites W3011186656 @default.
- W3100681411 cites W3011307261 @default.
- W3100681411 cites W3013013352 @default.
- W3100681411 cites W3013473577 @default.
- W3100681411 cites W3013737758 @default.
- W3100681411 cites W3014820715 @default.
- W3100681411 cites W3015538318 @default.
- W3100681411 cites W3016150967 @default.
- W3100681411 cites W3016902371 @default.
- W3100681411 cites W3019559535 @default.
- W3100681411 cites W3021138697 @default.
- W3100681411 cites W3021828470 @default.
- W3100681411 cites W3022455098 @default.
- W3100681411 cites W3023916440 @default.
- W3100681411 cites W3025393247 @default.
- W3100681411 cites W3027968211 @default.
- W3100681411 cites W3028930026 @default.
- W3100681411 cites W3033094519 @default.
- W3100681411 cites W3035550116 @default.
- W3100681411 cites W3036419136 @default.
- W3100681411 cites W3037901465 @default.
- W3100681411 cites W3038709602 @default.
- W3100681411 cites W3040860423 @default.
- W3100681411 cites W3041835298 @default.
- W3100681411 cites W3043582534 @default.
- W3100681411 cites W3047051297 @default.
- W3100681411 cites W3075421123 @default.
- W3100681411 cites W3080511436 @default.
- W3100681411 cites W3082954497 @default.
- W3100681411 cites W3084060850 @default.
- W3100681411 cites W3084806672 @default.
- W3100681411 cites W3087514609 @default.
- W3100681411 cites W3088170253 @default.
- W3100681411 cites W3090936981 @default.
- W3100681411 cites W3093512296 @default.
- W3100681411 cites W3095360852 @default.
- W3100681411 cites W3105025237 @default.
- W3100681411 cites W3125749663 @default.
- W3100681411 doi "https://doi.org/10.2196/24286" @default.
- W3100681411 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7717896" @default.
- W3100681411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33216726" @default.
- W3100681411 hasPublicationYear "2020" @default.
- W3100681411 type Work @default.
- W3100681411 sameAs 3100681411 @default.
- W3100681411 citedByCount "24" @default.
- W3100681411 countsByYear W31006814112020 @default.
- W3100681411 countsByYear W31006814112021 @default.
- W3100681411 countsByYear W31006814112022 @default.
- W3100681411 countsByYear W31006814112023 @default.
- W3100681411 crossrefType "journal-article" @default.
- W3100681411 hasAuthorship W3100681411A5003745326 @default.
- W3100681411 hasAuthorship W3100681411A5011685760 @default.
- W3100681411 hasAuthorship W3100681411A5019405556 @default.
- W3100681411 hasAuthorship W3100681411A5024981232 @default.
- W3100681411 hasAuthorship W3100681411A5027252372 @default.
- W3100681411 hasAuthorship W3100681411A5029767891 @default.
- W3100681411 hasAuthorship W3100681411A5032147253 @default.
- W3100681411 hasAuthorship W3100681411A5035079245 @default.
- W3100681411 hasAuthorship W3100681411A5038171056 @default.
- W3100681411 hasAuthorship W3100681411A5041036157 @default.
- W3100681411 hasAuthorship W3100681411A5045888021 @default.
- W3100681411 hasAuthorship W3100681411A5047738932 @default.
- W3100681411 hasAuthorship W3100681411A5067644316 @default.
- W3100681411 hasAuthorship W3100681411A5068293317 @default.
- W3100681411 hasBestOaLocation W31006814111 @default.
- W3100681411 hasConcept C138816342 @default.
- W3100681411 hasConcept C142724271 @default.
- W3100681411 hasConcept C144133560 @default.
- W3100681411 hasConcept C159110408 @default.