Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100684893> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3100684893 abstract "<p><strong>Introduction: </strong>The <em>New Horizons</em> flyby of Arrokoth revealed an ancient, contact binary planetesimal [1,2]. Arrokoth&#8217;s both lobes&#8217; respective principal axes are aligned within a few degrees [2], and such configuration suggests a co-orbiting Arrokoth before the coalescence of its two lobes [3]. One mechanism proposed for Kuiper belt object (KBO) binaries to merge into a bilobate body is a random walk due to collisions with other heliocentric bodies [3,4]. For Arrokoth, one thing that remains resolved is that its present-day spin period (15.92 hr) is slower than that predicted from both lobes&#8217; mutual gravitational pull (11.26 hr), assuming a comet-nucleus-like density of 500 kg m<sup>-3</sup> [3], implying ~30% angular momentum loss. While Arrokoth may simply be less dense, it is worth exploring whether collisions with other KBOs could have substantially altered its spin state over time. Here we adapt our Monte Carlo impact simulation for Ceres and Vesta [5] and investigate Arrokoth&#8217;s possible spindown (or spinup) by impacts.</p> <p><strong>Triaxial</strong><strong> Arrokoth and model results: </strong>We previously carried out Monte Carlo impact simulations with random impacts onto an Arrokoth modeled as an oblate spheroid [6]. Here we model Arrokoth as a triaxial ellipsoid by matching its cross-sectional areas along the principal axes with that from its shape model. We also scale this triaxial body&#8217;s density for its moment-of-inertia (MOI) to match that of Arrokoth. As a result, this model geometry approximates what the actual Arrokoth would undergo, regarding its dynamical evolution by a given flux of impactors. In this way we avoid the unnecessary complications for trying to track the ejecta interactions on a truly bilobate object.</p> <p>We base our range of impactor sizes from Arrokoth&#8217;s measured craters [2] along with impactor-crater scaling laws [7,8]. While the lower bound is well-determined near 10-m, the upper bound is less well constrained. Both scalings [7,8] predict that the largest crater &#8220;Maryland&#8221; (~7-km wide, [2]) could have been created by an impactor ~1-to-2-km wide with a typical impact speed ~300 m/s. The total number of impactors is extrapolated from the crater counts [2] where 40-50 craters or pits were recognized during the flyby on one side of Arrokoth. Hence, we allow for 100 impacts between 10 and 1000 m in our simulations (we vary the upper limit later), assuming d<em>N</em>/d<em>D</em> ~ <em>D</em><sup>-1.75</sup>&#160; [2,7], where <em>N</em>(><em>D</em>) is the number of impactors with diameters greater than <em>D</em>. Implicit in our modeling is the assumption that Arrokoth's craters postdate its (plausibly very early) merger [3]. We also track a disruption energy threshold for porous asteroids [9] to test for potential catastrophic breakup.</p> <p>Figure 1 consists the results after 5000 Monte Carlo simulations starting at 11.26 hr, with impactors from cold classical KBOs (CCKBOs). No disruption is predicted among all our simulations. About 80% of the simulations end within 11.2 &#177; 0.2 hr (1&#963;). Only 2% of the runs have a final spin increase or decrease by more than half an hour. The total, integrated impactor mass is only 0.01 &#177; 0.01% (1&#963;) of M, while the total mass loss ejected is 3.8 &#177; 1.6 times (1&#963;) larger [10], indicating that Arrokoth is losing mass almost all the time after these 100 impacts. This finding is opposite to what we have found on Ceres or Vesta [5] where a porous surface tends to retain mass rather than losing mass overall; this is expected because the escape velocity of Arrokoth is ~5 m/s, much lower than a typical impact velocity among KBOs [7].</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAXIAAAH0CAYAAAAgzabMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7L0HoCRXeSV8uqqrc3jv9cth8mhGo5yzAEkEkTE2tjFebOMc1sYBx7W9u/Y6/GvsdTaOsGuDAWOiBQIJEJJQnpFmNDm/nDunqur+z7n9WjyJkWY082AE7iP1vO4KN1Xd84X73XsDTQIddNBBBx18y8Ja+dvBOeD48eM4dOiQ+f7www/jE5/4BHzfN7+Fubk5fO5zn8NXvvKVlSMddNBBB2uHDpGfI3bv3o077rgDd999Nw4fPow/+qM/wic/+Un8wR/8wcoVwF/8xV/gT/7kT/DEE0+sHOmggw46WDt0XCvnADWdtOz/+I//wOjoKH76p3/aHBOJh8NhvPvd74bnefjJn/xJ5PN5vOpVr8IP/dAPmXuPHTuGcrmMQCAA13XNdfF4HI1Gw6RRKBSQTqfN93q9bv4qTcuyzLlIJALbtk1axWIRiUTCfFd6yiuVSpl72ml1dXWZtJWXrAXdr2tVhmAwCMdxzP0qh67T+fa9sVjM5Kvfykvl0jVKR2XT+XZeSk/1EHS+VquZ38qrVCo9k5d+K+32uXZZQqGQqVf7/Op6ra5ntVo1x3S9oHKrbu021Hml0z6fy+VMm7ShtNtt1M6rXRbdr7LovL6rDoLaRFD7qhy6Vu1SqVRMXqrbc9MSVG9dr7zazzoajZpzSl/3t+ul70pT5db9q9tEx1WPZDJprm3n1b5X6SuvdrmVT/tZ65zSVtvro9/tNlNZTvdetcupvJVmuyztd1TH1ObtdnmhZ61rdd3GjRtN2h2cOzoa+TlAL+Wtt95qXkgRmvCxj30MR44cMSQu6GX+1V/9VfzZn/0ZPvjBDxo3jDqPiLynpwfd3d3mZdfLre/qGPqoA7fPq2OpI+m7jqlDqVOInHWtOpA6r37rr+7V9/ZHnap9rzqgoOP6rXyVv85nMhlzrzqdfuujerXzaqetPHVOdRMZ6Hu73O3OrmMiIKXfLoc6fDsvpaVy61qd0zGltfp8Oy2dV9pqO5VR59X2gr7rvPJql6Wdl9qtnbZIqX1udRspXf1tE6CukWASebfvFZSWvuuja9v1VRsuLi4+k7fKp3qJHPVbhNV+PvqtNhP0XenrOrWxfuujcuua9m+1X/u3rlc9lJa+66Nyqrw6305L5dJvQW693t5e81vvkNq3fa8Ug/Z7p3rovdQx/W63Ubt9RPCqh67Tbx1XWfRb16sMq+uhtPRM2r+fW049yw7WDh2NfA3wf/7P/zHE8vrXvx6vfvWr8da3vhV33nmn0VguvPBC/O3f/i36+/vx2GOP4QMf+IDpUE8//TSuuuqqlRReOhApqXOrvC81HDhwANu2bVv59dLB5OSkIWyR20sJImI9z7GxsZUjLw2I8Hft2oVrr7125UgH54oOka8BDh48aDRdaTMa7JTmsnXrVqPFbdiwwfz++Mc/jte85jXYsmWL6WB79+7F1VdfvZJCBx3854H6w1NPPdUh8jVEh8jPA+Qy2LlzJ66//vpnXB0ddPCfBRpjUJDATTfdtHKkg3NFh0XOA+SGmZ+fN2ZvBx18K0Ohts8XVnvixAn89V//9cqvr2FhYcF8Olg7dIj8PEA+cvkt+/r6Vo500MG3HsbHx814kAbDT4X169fjZ3/2Z41bcTUU4bVu3bqVXx2sBTpEfp4gMu+gg29l/PM//7Mh5CuvvPKZ37/4i7+Iv/mbv3kmZPMHfuAH8Md//MfmexvtsMcO1g4dIu+ggw7OCv/4j/+IV7ziFea75k684x3vMGG1P/7jP45f//VfN8dvv/123HfffeZ7GwoC6IwNrS06rXkeoJd4ZmYGy8vLK0c66OBbD1NTU8+Eg37P93wPvvSlL+E3f/M3zbH9+/eb4+1JP+3fwuzsLKanp1d+dbAW6BD5eYAChRRz3J4110EH32rQpCjNN2j7xx9//HEza/k3fuM3zEQhheIKmgSkwX1d30Z7clQHa4cOkZ8HiMg1u02z7Dro4FsRInDN9lxaWjLv88///M/jlltuwac+9SnjNxfJC7I6dX54eNj8FnRfm+g7WBt0iLyDDjo4K+zYscPMUJbGrZnM73//+3HFFVeYlUAVXiscPXrU+MSHhobMb0HErk8Ha4cOkZ8ndF7kDr7V8TM/8zP4whe+YL7/1V/9lXGvaK0hkbgiWAStBPrOd77TfF+N9lo5HawNOkR+HiANZWJiwixo1EEH36p47Wtfa9wk7QlBCkNsD262l6a455578BM/8RPmWBsaJNX738HaoUPk5wHyH2pSxEtxYaoOOjhTaGXKu+66y6yueCpo0ThNBnrumkLyl+v972Dt0CHy84SOadnBtwMuueQSs8LnqTAwMICXvexlK786+EaiQ+TnCR0i7+A/KzSPovP+ry06RH4eoJc4m82aVRA76OA/G+Ry0fvfwdqhQ+TnCVprRWtOdNDBfzo0qcysfO1gbdBZj/w8QBtL7Nu37yW5Q1AHbZxbt1CvOjv3gRZTexF5P+fSU/VmFaPuN1HmJ+c/v/am4w7/cU5bbGbSqKPZeH5FJBBQal+fkNqkWqvh+JFxXH/V5StHOzhXdIh8DaB1JLR91aWXXorPfvazZj/Cd73rXc/M3NTaEh/60Ifwtre9zUyM6OwQ9BJDswF38ato+m6L9fjb/D0HOFYAx0s+cq42d145+IJ6aBMNv4F600JD+ROiQpvpnOquAK/vDVnoDfOq9gXsyfI/289h9yALMFnxMcVP3LZgOPYUEBN4DZaD38n5JtlWSs8tQcPk3zrbuuLZaGfw9edUm7pXR6MWwo1XvmrlaAfnig6RnyM0CeItb3mL2WD5tttuw//6X//LrDOu0Kzf+q3fMst1ahd9rS2h9Zu1AXNHI39pwa/Mws/vhdOj50HitWwF+7dOnjUCuHvOw3UZG9puuSlyNmp66+yp0AyIgi2VYOUIKXGld5o/q5Y+FhlLWET4aUEEHGhR6HN6tPI21sEL5H1qtG+gGq80n5FIykW1Wi0RnpOpEQenypD3eDXsevIpXH7VNSvHOjhXdIj8HKCme/DBB3H33XebWFrNdBN+53d+xyyKpd/SxrUms6YvS0v/8Ic/bHZF//KXv2zWpFCI1ktt097/bPCLx9B08wh2X2Z+V4sepvfNwA6RrKShSj1dzVmngejLCoawZ+8+bA3VEAiFEOwZQsPzqYlWT81vxCkPM+sm/wtQ0w7GoiYN/V7533wMSLLNYMycV5mfgZaLbfjq6CsHVt1zCjxTBqbnl4vAxBNI9UUQjDjwylUaKyRoXcT0AlaQVozPugYQjMcQsHmieerKWRQmElPLy1mcPHYU1vBG3Pz9P7pytoNzRYfI1wCaniwt+xd+4RfwL//yL2b95fYWV9rS6u1vfzv+9V//Fd///d+Pj3zkI2ZmpwTApk2bkMlknneHlQ6+OfAK+8nmVQS7Wj7b3Z87gK7BJGLdMUNYlhzHL6KXiPOr4TgKn/t7pLdfR9U5jEAkgZOf+hIiA5kWGZ4xRI4kb6+BxLpR9Fx5KTPQsecUiMTrhALPNiR0iVwpFERupfJ88uPU4MW+BxSXqqjXLEx+5VE0aF3akciz8ta3RrVm8rEpvJoUGs+FSDzf3YtsohvFQhHzc4tUYqL4nu+6ceWKDs4VHSJfA/zpn/4p+1Fr4SDtlC9Xy6te9SqznOdll12G973vfWbDWTV1m/S/3Vwr1WKNHV/G/bnBClLzDImNvpaSLPqzcw2cAQIWGoVDZCQR+SU4+sg4oskQhi4cWLng7KDA0sJX70L/DXea34Vj46hnc8hccbH5fTZY3rMPhaMn4SST/PW1bqtmYbM9c2h1h9Y5/TZN92K7OtvcotDwqlX0XHQBgiMjOtg6txpkfL9QoOL/XBcMtXZaB8EALddSEOuTDuJ8trVaHccOH8T113V20V8rdIh8DXDkyBGjZWtw84knnjDx4Zs3bzYDT9q3UMelib/+9a830/K/3QY7ayTxfV88gkhybZYmNTywykQ3rgXz8xQkck7gq2+F4JcnqJYXYcUv4DEX21++pXX6HJAvlVF9+qvov/Z283vq3geR3rYJ8ZFB8/tsUZ1fRKOuQdlVzM12eTLfQI2a99e1EA/YsSjsePQZf/uLAu8JBG1aJUE0TLjsqkTk0+e7bNMCDSZpVT5D4C3oSpfPMcjDh3MeNiRoNVAw1Gou6lYDt76lM9i5VugQ+XmAiP6xxx7D9ddf/22xJvnckQWa7h5GLj43kmqj6TdayuMKL+hrU37fb8SbapGMCgeYtodAcgeCp4+9OyNkF+bgTh5G32U3mnJPffmr6Lv6MjiJ2MoVa4cS09+dbeCKLgvec9tI1VkZZz178ObVD2QFATJ06dBxNLN5dF9xUUsjfy6ozMgz9dgScGE6CCrlWFoqYN/+p3HzzdevXNTBuUJivYMXgCbuFGg2yjXS/uj3uWyeLDeBZrfJ9fJtAdYnYK/dq6S05GKx9Fe+V36Cjm1cLmv+CYrLfdjh2JqRuOC4ZUSiUfO9kVtGyHO/ISQuaDC2jwQZZvHjfAzP+uiYDSRYz7P/BJAgGyfYPqs/SjtJAdjVl0aIzycSCX39JxSEzUb2GouYLTyEudLjODx9N+aye1dK38FaoKORnwbvec978PDDD5sIE2nS7SVo5QNXeOHZQK4VxZ63dx//VsfcsWUUJ+cxsj1D8/vsBdxq6KWUJmd842sFvuoBPj8707NyYAXZnUB0mEx4er+4S2th/1wZc0XXjDmeChr0y08cge976N60HeXZORQnptF35aVo1Ous1MqFp+p5L1BfxWDXXM+QZhvkWSy4TRT9ADZE8PUa+Qsh8PVa9rOxktjzpUlrsvbELljdaTjbd7BxTrEzPu+1Aw4eOPFpbOveDicYM7HqzaVZfMdNnfDDtUKHyE8DbSjb1dVlJvIoVFDQhB/tFt7eQfzF4tvNRz61ZwLHP34PNt20BZ57CvP6RULUIpLMk6Bq7koM9CnQ4Ku7OtLutGAyteU8etYPIX3TtfAUVkiEsg9Rbd2BRjB9StJS7hJPuUoDe2eK6KGqe9FQjFbZ11+sI3bQRvbwXlPuzPYLsfDgU4iNDCE61qcAlK/B3M5/SKhmSEAEt6o7rvYm6XTEDuBf9mTxlu1p4yLXpfI/z1Q0a9PCpnjTTOR5QSgh88dinVirld+ngtI3Tc9/FHkiQaLyKS5dwSlWOITsF7+C8p57EdpxBZzeUZb32QWweG8w2Yuv5J7ArcNXI2xHzfs/MXESt77s5pWrOjhXdIj8DHD//ffjAx/4AH7t137NvMhaNP9cNMVvN4382P370CSBb3rF2UdknAp/dYxsoUHkr6OHFskNhYFeh+RFUjqTl1iPzOeNwUcfxfj4LIlHoYA2eq1HsD81ABdyfTzXolhJmX964iFs64uhN2GjVv/adc99E6ygg9LUMdQ9asjh9dh116PU+CNwkolVoYdNKrRBknMGjh+BhhG7WJOegIds1We1A+iiSdKuuf6Nh4O4/1geN25IGlK1QiFYno9Zy8bMxgIoRk06urjt6mpqAJQFDIUsE0FihA8FR3CyiHR1jOeeW98V8B5NTlLIYZNWQCEUZx4XmjpEEiHEe5Q/hdvdD2HmkZ0IjZLEc1O8T/kGnhEojXoNwXgKBzeEcHktQoEQQLVaQaynBy9/4ytbF3VwzugQ+RlAoYLf9V3fZSb9aNNYhRAqBvxsUavV8JnPfAY33ngjBgdPP0BYXcpi9ssPISif63OelvlJ9cgnkTZcmu3ql2cpY1qvwot7HTRpZnznJGKhJgYuHWPHNVRyBmAhNVnlWWDepvwBlEhOjzfTuC5ShdOVbpWqXTTVj4R4CFFsTIcwVMmZWZFnVHaq+oFgELWZWfg1F8FgCIfLd2HmyW5kIv1Me4XYSHhKbXXvaPCIzwMSBi0EUOfvmvdsy8DMDK3l8Eg5gNFQBeGoh76rLuUzWuV60PURG7lwBYVsFgGmYSVjcGJRQ/YlMuGGuI0QCb1dhjBv2jeZxbaBOBq8fvngEaSHh5BPRfDI0mFEXb5LJGkpGW5Bu9ZTWCTjLCUT4P8qtwaN9Sk2JjHAdqi7Peaer4Hto/blPxIjtXIQzboDLxVGkkciemwhG/1bMqyzBW/vU1g8Og1raJQZyNxoae9J20fI0uQlHuZ9k7EK1uXUpkFUaxVs2HIp3vjWH1GGHawBOkR+hlhcXHxmcHJkZMTMzjxbSCPfs2cPrr32zOJoFx7djWqzhPQFG81MutWw+J8IUeFhNjVBQ3IvEnoBpOE5NjWmAOv13DRaF5wazH73J3fj8/PsqDdebDS41sXtkMHW7S3fgQhPrhJSRIPaY3Z+5ZrWyh0aFLtiMIJ+L4uFegDH3RCuwjLK+dIz0Yj6I3eC+UtSvr8QRNGl+d5sh8bxDNvja4s2mdxXwHxIklY4imCqG+FGELnKQZwc34WMdxOSPSofr+f/ViwBK5ogKTOtlbsNVv1QyiFWQGOkUoBbp/TDQW5+EstHT2LT1dfCSScQTqcMgT4bChf0WLeW9FVXlNtCa6Ms1BrI1nwMxWwea5FruVDGkcklbOtPwK+7rIeDns2jODQ7gQcPPYbtI1eY+onITbfmxwpQwDdaJfMoipSOcg1ZYWSiWQQbZZO3KFevViTUwES2jLIXQr12AFMLOSQTY7i4i7KJ6WiAOMTri7kyJnbNIrR7H7z+GOrJbhNPrrQi7izGUieQcPjcTNpBTMdSGKbA5U+4lSK2XvZm3PzG/2bK1cG5o0PkZwBp5G9961vN9lTSyDUBqL034dngxfrID+38IvJdOXSlRgwRroYhhxWN6mwfpbq57vQVWREMIxJ89kxT+VKfL0onEnVw7yf3wE5U8IqrR6ltkQ1EFr5MeZKULiJ7uF6ZGmHrHDxSSrXYEkpiFn6k/dVpqz9cTCCRn0KJ5DW36GNT2ke+QgJiPXWpTPa5Kssi4UVrgPqiUeLNSYHn5doIONRfn9sevEYLYzVk2o+sQx8c1KXnHquh4g8i0Zcymr60YCsSo6BZhDd93ORlyn0qGJJdyUfpG6vIg7u0hPwj+xFYvxH1am1FAH99IjrSLmX7rH7bTeqx8RQGmmXRrxEUdRJplHVOelWUFhbNyGaAFtDR/iiK8TouH3fQyGSoQa+0M/+REAiGZbHxWTRoKfC4hHbD05Sl2jO+dpft63pBRMpLgNPL+vcgFLYw33cUqcJG5hNGtVhBjg8glIggwXMFWkHu8cPIRRyUSeQB5iE0mahPbV0kbjIMNpEuHEbIy8BjG7mFIq56/Q1442//gLm+g3NHh8jPABrwFPFq8SstgnWusd8vlsiffvKzWH/hNUiEMitHno0zfYBtong+1EgQdRKuy07e6oQtyFWgQauv4WvfI9QK//2fHkFf4j7ccnEfqnWWplGHX6zDTlFDNDREEz8Yg22HyXUiU2rFvSNwBjab8y2IXgTVxsKMokOemMHLrxnmb13TqmWOZLa/1MRIoI7coZMkjfZ9q6BXmh8Tj75y3zNQPXSaQqXpWIiQhOoH70atmxo5iVxrlYi3RbxaS8R3cxQiriFEUXGruyjHZ6f7zC8KWjsSwviu/Vj40w+i6/ZrqAlTq6YA0a3PLatJzVhBzHQFGoYsUJh2O01sC9V5PwULyz2T53fbxjpq5FY8zlsCiDPRj3X1YPnBnbijFoGfTqP38u1wS9S01QbNIKLhx/hct1FQ671tFaLpFpgPLUybWjsFV/e6NELJFJbn4ijt/Cr8wiJslqser2A8uoxY9zAi8bAR6HInaWJPrmHhxOcexqZ3vR7W2BjTbLmO1O6SuA3jVPHhWU0ceuAeXHLVK2hFhA3Jh7wk7rj6zeb6Ds4dHSI/Df7hH/4B//f//l8TephIJBAKhYyPXDM2zxYvlsgff+wjuOyqt9DkPnt3jtCoU9syS7WuHPg6iBR58lmk3caq16S9DrUudWx89L0PYurGC3DDJetI5FqgiV04uxN275W8VvTHP8atsCoNEqZvFoBqoemWWLYSO78HJ9yL6UoSCzNFXL2ji4ontUqSqkMNcLbqUcMMIXr0ECoLWUQy3cad8FxYCjOUq+k5UM0kUKR5y5oJBHxM7XkUIxdei3BMWnzrOtGpVkV0Fx5CwE6S1JomdloEpnoYQ4h/AyzbagRJig6ve+D/PoDQ6AZcc/s6+CQ1hT226/+1O/RbWjPb02TcOuOQ/A6hF8vFIjY4FTiKpeczmctX2JwNDHTF5FfiLQ0kgjY+uACElhfxus0R5Eox+Et5DF6zkW1JQdTIo1GZQzC+jam3iFZVsG2+SyRU32f+aj9lT8INWNTcbVpgsSDbRj76BDX8Ch+XyxYJ8j6H15sEUF0u4qHf/xBSNw/ByvTztWA9mFZi4yicRNxcZ1NA5VjG3Z96CC+74wpMMp9spYqx+ADu2NFZa2Wt0CHy0+Dzn/+8GZCUX1xrjrd944olv/zys1sYX+l8+tOfxg033GDCGk+Hrz72/3DD1e9Y+XV2aLhF1Kc+ww69gQTQItezAzu9JYJsuRuccAB/+97DKL96HV415qEsOSGTO78HdpwmuaVJMateMZKP0ZL52kmjNDJDP70CibzMJKn9V47gWPMVKC7UcfkWH6Wa3AK6z8NkpYlu20flwBH0XHlJ695Wys9ABNvQQlPGDcUMVg3m6XVv+PIWy/0g908V8/v3YHngMnhevZUYbxH5+oV5WJEwrFCPKecSrY25gktSDmCsO0UeHMOiJ2ullb40TYp7xOemMPfZzyNwy8uQ2MT2NrH10o5F/CqbzfRE4HarnPzPCIWVdNQkZd4TjUdw03AcMTa3XConlmrMo4lNPRoQ1bVB5KszuO/I40jwcVw2usWQbr3qol4swaZVsWnqKRLzECpOCj7rq9j86VwNn9i7aHzxG7oiuGokiTDrlKusrJJIwVEOlzExvxcRi5ZENEphSkFG62tT/42IW2UK1QKmJmYRvf9BrBtMordvkKWhVVesIj4ygNj6UdbbY9vYyLp8bo/ci+3X3IGDNWrxB/ci3D+G7/qJn1d1O1gDdIj8NPjlX/5lPProoxij6SizUuuntGPI//t//+8rV704SLuX3/1Mww8f3vkhXHfF96z8Ojs0KpMtzaznipUja4c//P0v4IbvHsMtQ9Ro5cSm5dBcfhyB2Aaqit3ksK9pzAEnAvZifvvapBYjHAxEYfwsfB6PLl2N6X+7Gy+/cQxVr+V20CDn/nITfbNTJB4gtWU9LLdqfLLPhYjS/OVHGn2DhGJ+mWtVRn23EQlk8dSenXjUuRmXxMtmsoquC1p81u7DiHYP82oLh+dLCIZEZAk0LBGwhYPlpzAQb0UKMQeTrnzZrtvEgbt3YfSaHegZibQ0VUGrIIYimC1Vscw2SbvL6EttZku0lANpw0rJlJlfl0nIVbZnf1yatYV5EnAqFiW5Mi8rhFh0jGmFcff0ITxwuA/D0RpGgrR0mECRaW6f3YtAJoFpEnl9dhkYGINLi3K2EMDGrpZLhUVF3dUoCMvOMtUjMZRZopgEjR1C/2IN8YVF9I72m6iZAEVVlzOOYMxFZWYe8Xsfwrpbd6DatR1ykSu8sHb4JMIbx9guut7CcqCB6vReYN1NWOcuYrHmo2vLZrz2rW8y9e7g3NEh8tPg5MmTZlGsNjEIarJt27ZheFj+2xePF+Na8dmZnzz6KVy54ztWjpwBRJxal7pdZBJWs/A0/9Akj21iB6NGyqf+df5jQrdoxbs8O2WRGmg6LLOeB1deE5uCrO0rNu4L3vHH//s/0HvlJPqD1L5FlGyrmE9ttllGMbiJV1BN1+1MpyfSwJY0LRt2bln0nlwvfoXnWy4fdf2Au4DHplJI5mu4/Nou1LTLDm+nvohZao2hE8cR3jBqiFVhe740ad2nTFZp34KIxKNmqmgahWja/BtQnrxMa4PE7TIO5JqsaxxXd82jQaINOLyLz8ib2ItG9zrmEzXaak8sCKtURIL355seZqwqtnsDcG3HaNaGgsnkHs2Sx+85jguu3YpkzyjqPlVqPhO5eiLrexAeuYTtuw7L5eNYKk8jluxGUIOzLK+aWa9ak+U6XKD2zja6KMKy8+DT0y5GxhxY3QMoVYvIVhZRu+cYvhzOIpLN47XJIyg3KRR4vzTr4MwUFnuSKMGBuxhGoxxANRXBVLMbF2CKZWa5+J44zSpJvI5GkO9HwEUykUQoFiJZB0i6PTh2fB4erSJZHg0K6VpAVhYz4fuxbe8Ujt4yhqwTQ5ziQ3Ww62xvWhCmHPxddGilzJaBsRicYg6VXAU3XfFKvO3t7+bZDtYCHSI/DxCRn+kyttVCFgem7sfg6GvJBWTXF3pc0qL8BqbveZDcWCantjRV6lr87wCJsJ+3d0PLbCe0zoiuN1d8DbplLzvdHieDHtuDl+piviTdGk1sEt9+xBBMJ9Gs1kz4m7dUwtKTe3H5xTtRKHZR43TgBy1Eqddl7Dkc87YghLrR9BLREGxKEJ8k6CrNRsAQlB3sMhqmSuPX6rC8EnLLddRKHiqZGrqnqAHyrE/BUaeWWHS7UO/uRSiVMj5ynySpe5vMtdGMrXC5/tEgIfPR1+wCLnROkMQb5C4KNpESNdHucBFlt4iJcQeZOAVGiFqzzbQsB4n+Bu51bkc0V0V8aRnlWhMVnt/ANFM7qvAwgqjdj+XKcSzkjxkfsucEkTl8HJXFIGIjFoaTU8g3EgjKnWM30DtDq2gwgDm/Dxa17AYJ1GU7a9BR3nEEqwj7Uxi1lvB08BpE/TkjVETMEhS1ZB12aADrInUkZoMIF3z8e2oQF0e24Q09eZSo7Up4BebnMX30cSx4NWRjcWwbPoRYpYRjGDL1G47OoB6l8GB7sDXYThaqzgZE3KOw5D5qpDEzstmsXhgiucesoBG+tRpfHhYXNsm6RIvm8+MovXkrn28Q0ZVQRrdOsmeqInPFlIPt5h0twb4oiYBfhVuhANzwKlx744/x+g7WAh0iPw20MYQGPG+55Rbj014LVKtVs0OQJgRpS7gXQrUwi3/f9SiQvAlDCWOtPg/Y0R0HxWPj8Eok0SsvgV+v8bjUIhLM8hNwui+gdpnGfLFmQuz6E5ozKZ2pBQ2C5as+atTSXrMxsepMC8r67yd8vH3UJmVSIeOnPFvEX/ztR/FDP9SNeM917Kh1hIM2zXBS6+JXEUhfyYRXBvqUoCn/c1OWji/wuHwKgTo++pl7EWsu4MbXvRzViscXlVowte+JpSzSex+kIHCQfXI/vHrBkLPuNZMtSSK2CqYjTK7ajBrh5sRDiFglkkoBVhctBaeXFyiaxMOBei+6yhWk/CJcuWDYyIocqUcTmK2nUM030ZMhTVNAqRwBRV5EcojUUqhUK1TCqTF71MqpoXoUcMwKFeYdTqSRTi7ByU7DGCVy8WhcgGUL2i5cN8isFNPtIBXtp5itoxRkWQMsa7GMBVpPYVoQE4ObKQB9VOo5tmuZxM723+zBnlnE6OZF/OHcjbh9aSeuKu1BnffKKAqxDfxMH5bsYRyejmGx2kSCRLxYsRAL1BCUBSThoEaSycX0i4FuI+CCQQo5atGVSpzt0ZB4NC6TZV6b8As06EJG4Ff8EEbnTuCR4StQrIUpxihQebzusV0prGMkbQnVRLSI9OQy5vqGec5im9Vw52uvx8+8+62tB9XBOaND5KfBe9/7Xtx7771Gi1b8+MUXn/s0dPnItUOQiDy6skLe86GQPYYP7TyI77v11Yitdis/D5a+9ABSF25FcEB+6FXIPQgsd1ELpRbG3pUj6czkFEfcIhb20xWuDWB9F813fhcvmoPmeJPkCXxh3sNVXTYGQ7ySGrnvBfEnH/sCbryU5BPcgYJXR/zCbYjGUkgs3YVq7Ep4wW7e3zBEZki7TSDGYNCxFbAsinYIx4G7PvEpjCUtXHrH66B1pqSwzpN7sk8/ja3rMnBzLo7vfQobk/tR6X0zLAoPaZpmNx+xB/OynACO3nUCTrqBoet3YNFKY88ChVhlAdWlPGpsAz+7iMX5g8gs7kZo+iTy67ca90HD9RBMhZCo5uGESd7jBXhDUVw0foBtuYTgpl441TCJroinKhsxGpmBF4iZOGmtomidzOLyzAk0NYCYDKn2JEgPdWq2Hok77LhY8pJ4fHkjIsbtwmRJ7mx5hFkF32Na4QRJtIoIBZueS4lkG/ZEqmWMWHmkvSLqsSD+NXEVLl8soNdbZv5sB7av4uMbvD/I9j58PIRKT5rPx8cRvxfrrHlUU91MOcF82O58BAFaWwVaRg7JN8T8BpwsT8h3bh4SrR4+A0W1yKLyWRoKNW/ZQzy/DL8vbkhdzR50eA0F7qKXQNKqIOlTIKW7kTiRp7XDt4jPpVqq4ppXvwJv+rnvN2l3cO7oEPlp8Nu//dtmizZFr2hCkDaHOFe8kGtlkqSlviVI68ktH8G/PzmJH7/lVmozK7HIhvue7eE2xMhONvPlhzH4iptaZ82jJamQ5OrHv4iPfPAkihsuInHQdNZ/6sAmFZF06+8lAwmkSQ6a4WjyUTI2NTBqbVl2UK2JtUjVd1uSpjM1YTdbwb2PPIntPOdsv47E4RrfeTkchV3Lwq3NsXfTlGBCwUYddmQQrh2j9lpFZWaB5CviZVmYv0IU9Z/2gd+3mMXW8pNIOxn4sRia3QNYbEaQXNqFbPQa2HPjADW9sHUUbuxmki9NfmrLIiWVWf/E0iTOY0cwcCXLEqWm3nBpiVjQfBmtAeKwHSZ2HcF8OIX+6j4q8yQylqEvVUGsu4giepA6eQKhlItcNo1SvB8BEtdAVx6e28TUposxFd1sBNxoIAvq9CiWqaWXwvCKAaSjJf5tIBhhrWqsnywTuZSatFhIxoPlo+g/tA9HE9ux3DuKeH0S9SEXyRMxVGeqYGJwahU2jybXkEhJ9E1q3GGSdTY0gqlXXI9mfAKHSPDd+RGE2PaKq9d7EAroviaiSzUsWdSc103Db9AKq7kYRB5lJlgz5VFTyfdtoZTegsHSIb5/GswNUsi3aNy8Gs+Az4q/teuPP1NA34m9KN9I5cZO05AqkfD1XlGQlH3sDa3HZaEJ2hAVNB8pIXhzBuEI25VW30VXXI9bb37XSpodnCs6RH4a/OZv/qbZBEKkJdfKj/3Yj33d+ihPU0vU+UsuucT8veeee3D77bebCBdBoYpf+cpXTBz6G97whucd7JyuAf9230FYbs34JhW65VnTOPbIE7hjwYOfCJl1PUrUiNTxRMJtsvU0cy+bZ2elAEinqGHVeL9O8sNiRPxxBPuolQ336S7TeRUm6FH7bHU+av/sYPNFD4mQxfTly2b/pDpcXr8RpcFRtPdjNGFsOudQ+6vV4B+agk9t2B/pp0kebq0bolx4TdMt8h+F2FFTbdaRinpYaIwi4FbgM21tWyb3Qqo0i97CMTQ0K5NXT8cHkJ7ZjUCOeUj7sx1Ug1HEeF+5QU21PIdU3CUh1rDY6KWAoabLcol6VBdp59I2bZdWQ5yCKV9A1GuNG4h41TJxpmuTrBoUUnFq3kEyVqXIa4s+GvGVWZ8aaFWb2tSpqTU3fOrM1Lh9t26mtx9PD2NDbpaas8tP2fiDq7UQyiWS3YCPXFccjUUbjqccNVpBTZ8CrY4ImutJ/IEB5CIZ/mogxLpFaiWEo9TimenClkEEj8wgWVnkXWxR1ilQdygUbPQOLsHzDqI6O46duAGXhseRCM/ymfE61Z/P1vVC8KcT2DO8ARsjB8w4Q6DA+lKS+bQM3O4uWglJtifr5oQAJ4IEFYdkI4taQ8I8AE+Td9Q+oSAqlC16svq3QcsnfsDFWG4Ohy8YREXCP+KYd824atj2JwqD6AsuwC8HYBdoiSYiLBefSzmLV77i5fjOH/xFXtzBWqBD5KeBNpLYvXs3HnroITz11FOYm5szLpatW7ea83KRaHPln/u5nzOfH//xHzfXKmSxPQP0N37jN8zaKtrL853vfKch8mdWP/RyJIUStS0Leyar+ORdTyMjHwpJCY0acsWdeGRvDddduJ1sLN+jiYBGILGJJKRBuyD7Dokn7KB86Di6t41ge2gXynVqo+yIergKvavs34nh9SSghFa8k0ra0AxvrO+OIUmNlz9NnhYJU9PbT5Q9TJQbiIVo9lfrKO7eh2FqkapTU5NbSMK9gTKKJRv3V0YxSnP9glgNgYiFHpfEE+B1bUGif6VtU5tMZ/JokOQCzbSZ+KJoFS9/jMIhCct3Yfvyo1h4An2IHTiERqaf9WugpzSFJR5rphLwJuZQtSM45KxDtIdaPhkmWCpjuJJlmiTKZAJ2MmXcS34xx9yzqOaYmya/sM6yAoIFErtDbTUZxwQPxmebbDMxdQNLPsnNisAb6IY9n2VZtUQA4PaEUKGFkKnPopIL8hpq3lu2YbiepZZvo2gF0J2kcLFZPmeJ2vLFLJeDmfh6Ct8Ygn4F/cFlZJwiqoE0n30DyQNPw60uwk9Sc18mnRvBwhpTinZtd1i2yxA/Pklu9DTUYVrTsthu/J4vdMHl9eXBENYnLURTDVS8IOuop663gpp1mBYISdepKK6eygHvbYRJpi4FONtDg8Gy5ryqJjv56I/nkcku8FnUjFBs3UMhLKtOLx7TllC2mO/MeAJNCua9ya08r+lHijxq0YnF8i8Fe1AMd2FuIUrLSdLQMmMWFQr/1123Be9+U2fPzrVCh8hfJDT4qQFKrbki7Ny5Ex//+MfR19eHn/iJn8C///u/m99///d/b67xPM+Quxbcuu666/Dud7/bTAj6/BfuQX9PDBf0zSKRXkci9/GRwzbumQlic9o3mpBVX8KiN48DDwdwweYrSHDSgtk9G1RvSPJNkplXOMI8hpDoz2Dp+CJCjRPUKuPoqzfgFKghsmOFYh4y1hexGNuArJ1BMlNDMd1DzbmMmOVS+3f4oQbXkIZKwpkvUNMmaUs75v1W00N3dgqLA1uouWYRry3gcPQS1OPsyEcrqPencNH8/YiRoeeKYQRJkNcUaKUwTUkSEX8tGKM2nkOqq2b8qCfDg5gN97Scr6SMgNZEpewqIkntPoLSBMuQdxHZqigJkgcJ1j5aQM0Owy5VcDLSB/QC/b1sC5JM1o8jmPdxITVT7fruUgt0otR6aQ3YTslo4kaqEWYgk0Klihjb2MdMI4aJ4CiGQnkzeSdbjLHdHbaFJse30PLvNxEx7UFSYrfRhJvR7LSxUNhQsGSxhGxER+SWaJ23mIYtwblCcHJvCDbJVM9T5KZ79ZHgUwy4yqkJuLkC2y2QwkJzwNAyL9KtLUjwMq1AvASnTkEWZLkofBWBwoJQWPFallF1zVtJHCyOmXSbxkpsZaJs1fuNuKeg1fNaSIygv6mW0VosulbTsDRBKYxqQx58vne0VKiyY4M1RSWgRqEdYl01CtBOuZWmTXKP1IqwahUsU1BXa0FcFTmGIon8qhvuwOvf1ln9cK3QIfI1wF//9V8bov7FX/xFo8H/6I/+KP7pn/4JkUjEnJ+ZmUEmkzH+9b/8y7800/sfefQJXLa9B8Hikwj3XcM+4+KPdwVwU2YR1w4FqbmwS578Mj678yiO3V3Eba9+Few4tSlplX6VPL6IYGoj/NwRlI7vg71xO+YnpjFpjcEKr8NCVxjxVBMJ/wjsmIX09GM43LjQuD5CtPuL3QmU86NoVKhteSfZqS1qfHbLj7xcQrmWJse2prL31PIkmAame2gFTM/BKS1jYcOFqPX1IlytILO+BjYAcr2DKJCcl5sJpI7fwyotkEZsBKnp1Z0o4iS1RraOeasfqbSFMW8RmeVZkhW12+5BxKKLWO8fxDFnGzJ7TuJ4vQdHt2wnUdWNy6CL5DBHjXjs0DxmRjO43JrATL7buF2cXAn73Qy2WNTbJ6awEBtAfHkJ413rzfokpDySGGmG/2tBqgJSmHfGEGvmSUtHUQ0OIkyiktthc+9x00b5agahlRUvRXKZ3pOI+lFcWj6G2jE+C2nObDdfsz+rFJzUSBepaC/wuUfYLusuryBMUq8f7oNV9FGrWKgk4mZw06XFkgv2wrccBJlXbHEewWqZz6FFhXrOo5vmMT+epBDTsRXwq9w8FonXqvPTfQSpUBSu1mWfTZHApfmytuRghedLIEwGu3B183Ekafm1raR2p1facl3Fh0nE/O7n2T4RlpWkG1SIIa+vyWOiaB0Kp1xyCHEva9xMzhyFcojXNMq09ALU9En5TFgD6A0riJpmvcr6IcVIgO2vbcVCKopkeRoX3/yduO3tv75Sig7OFR0if5HQLvnydV9wgXZcb+HP//zPjZb98z//88b18l//63/F+9//fnziE5/AZZddhr/5m78xGrv84v/4j/9otPSn9x3BVRuzyJ/YBav/1VTkPPzml8fxvfVHsaErRe2Y2uejn8BDAyToByK487V91Mnqxm9pOnplEk5iPZrlInbXU6htvRKlmaJxf3SXs+yq7EAkbfZsdqI6YjN/D38hg2J0EyLZcVSi/ahbYbhDY9hXijP/JqLDW7BkDdL0nUEqoIku1NCbdQTqk3ggN4jFuqIUFqlh09IIO4jNL8FLpRC6cgwbx/fA1hrY1MIsdtpydx+c/DJiJLZN1adIZAX09lexOJ9EzKlQO7PR50+jQlM7QCHmeC1T3qxyGKUSHgqhOesh2aDQYpXz0R7MDu+gaujjmDWEsfgERUQSC90bESVhdx2bwXI0QEKjNQISC8/WexuY9aIY6NJyqtJ8FRoXYflq6CkuwaGQmm+G2ERVhHu2IFRxYZXY7kwHXtKsRGBVKiQitjw12Vh6gcaBg1S+hhxJ36i0BDsRBSSFoKyfIC0cEmi46VJQZkyd7ChJns/JSjq0YpImwsNv0III12HTAnDcKiy/FZkiImxQ8Gjp12SUQqZZwUx5tKXVC8xLs2cbLFygwmPhryLZ02/KVZ0egqW4Q6nQLaMBdVqFORLvpvwcCTlu2tewuBnwNgkaYaKZqjF3hs9WVhiFe6g1AUgE3KClVrdbu+Rbyj9IQcC/ybkTSDcLWOy/0Gj9xYzcbmE42TwGS0cQG2jgRKUHfblFdPVXeG8d2UYXyhR6Gy9/M658XYfI1wodIn+R+KM/+iPjMnnHO95htoATtPWbmlFL24rQNfipdVgef/xxbN682ZyTy+WVr3yl2fuzTA1s/6FJXJR+CId2dyGx4VXUfpr4vf/4NO6o5pEeuhq10jgO3ftVPDbQh+bxCPyuEKwYzXZNsmiwkyn0rMoHqDjBsSDSC3tNjHEzWsVMUDG9JAOSlEvCsKlNvyayE0eyXdgbHMWOwjwWwiQUO4iIm0cimjJRCEG3jC6/jAmrG02SthUOIkatbF1Si1kx9Ug3Nh3fi6E8Ne1GCFEKiBxN5vtuezsuOvgvZsXDcJgqIK8u2H1Mj4KnTkKdDyBfiSMzUkRhgh2dGrqWuI3bFdTqEZQCXfCDId4ndwSJPNSEqDdGTkrYJEDbRSSotMuYLyRwJLMJr3T2YMLZDLtMEjxBYu4lyYab+HL8Atw6uw8Jj+Y8SXMXrZOXV54gecraaKAWSqJmR0xstCbpPBHbhIPDI7h1bgnNqo1ykkTsxRB1KVSobTbZxtJGa7QolgdGkA/GMUBL40TPhdRuWWKqvtrkwQ1FKHBYL9bXI9ElA3W4CzYScwuwtgbRcEniJFKfAiBuzcGK8FnWc5R7HttixS3B9rJoEYlA5bvW0OjGxEHYYWrwfthoui3ypaZNwRKoeDjRfwipZA9KVVp/dj8togF4iaAhe5HuMgVgcN9ejKKIGQq1QoDvBhOh7q2Xhym1UpSnJqglAmh5mJBEVk4WjAZFtQhYNBZBoMz8q55xzzQp5K1yDqPuCSNg484JCoNBHqcAplWTKk6Drxgma3H009oIjHUxp5YQKdTzuGjLbbjj9p8yeXdw7ugQ+WmgiBUNVMpNIk06nU4bQm67Tc4GlUoVT+w5jC3VTyB7YgPS/SKIMP7ko0/htkGSSfcSpsaX4T48BfuGPAqPxaiRRpEgoVh9JIWVDq0IGctSaGAF5UCMmqV2fOG5QgXRgCYDkYicIVTQjbd4n8ZX/R2YSwwhUS2awbdaTb524NJMCrGgohwUx+yiweMlaYTUlvPhNPqpSRUqUSwsl7CxeBK5zTHEJopIpMdQzs1j4mXrsDSVx7izg2Vh56cWJ45QGKJW6/Op5SWtLMINErdLTVdmerOBBX7214ZYF0U7O9AKAs2o5kc2ceXJR/DVweuomVOIaZILayPCu+jkbtTS63Dp4EG4Cs3jM2mw3tRREV+qI9/IwE9VTF65RgozjR4MNrX2uYdYYRZzWqVPo4YkKqXn1CkQHQcRJ8gykcx8kVvaDKYuNfvh87jRRBs+yT0Lp5kjgTUwHcoYf7oGnwskuwotlDqFn1ZGiFL49VLopHINCpoGSiMkN2rm0nrtsosULSY7qElOzJBlUECLVauR4CLQmmy24tAdn0+Cwo15O3yWPsvlqlFrVXTXK6hYUVyDp1C7bpFtvwMHixnYiTTiaQlSatIRzbC1MTo7jsuXT+DejbcxHQpJWTySQEa75lPWWEswxmsddIXyfD4KYqSGzmvlHokUlpFcmkbIK6HO9JfGNhoh7PK9u3b2cQzVFrErcgEtPLK2/PLMW8VUXRXxYwbiaRUaS1L/Fyjcpxdw6ytvxff9wNt4fQdrgQ6RnwbSpD/84Q8bP7fCCw8cOGCWte3vf86EmxcBbfV2/2OPoPvxv8bAhT+M5MaL8MThLP76rgdwa/dDGOypoFosYXaphCM9O6jFbkQoTc3Ty5O0qKaKfdkRzS441NBLmSAWl5PsMjaCzRpuSh4kgWsyB7Vqq4YYzeiNCWrh1CZjqKNZpr5eBIp9XbyD5jc7mQZXzUAb05WWHKNJD1QxUR5Gc5ma9FGazVkgF0ygENHmvySMmo/YUDe23BxFYM/9SGdIICRJj6RgtDa5SkjaTU9/aVZT8y5Rg1en7p8/jkojiuOhzYguZxFayMNONxHdKNdBAJnJeUwudWOip4t1okaq8pGYYi5JjYTRWyVRk6xckrjIotsuI970UGPaPom02nRIviJ4kmTQhV2lACzFSJgkGn5vRhWeKXeFhWSoirybpiBjOVVm/ifeURxGQ/XgR+uHhNwGteg6iYwCVXGe5koSNy2TZjigJWzY3iSusI3FWC+6UgcQiuTYthIGEjXUYqlpB7MBhLMUulEbheQQ3IJtBJKXTJBs2abeDAbmKN5icdRpqVk1kj7vl/ZfoZDUgGuQ2SecOeZfRw+FQRZJRPheadEv7eMZoGIgMhYRB5NBWiejbFcT7GLKosFbWV2J2jKFvod8fBAn4utNOKoqxSTZ7iRsfoq0QF22gVNlHbSEwRhJm+cvpuWTxDSeuHwDIhVaaXwlDJkw7XoiSYuqhGg+T/Lme6p4VcmhpSRCy8dwxW1vwGve9cu6uoM1QIfIzwD33XefiU752Z/9WbMB85vf/OYz3qbtVChX6jg6uR/48B9g+4/9HeoLVewJR/De3/td/MH3US2dT2HpySfwdKKI8Tlq0F0ziI2NoOBmUKmHEAmzgxnSqWHWTSBXCuHO5iPoJSE5AwnMkiwmGiN8uloUFtjAjlPqaWB3+XKEaabHCx7Glo/gq96rgWWXZnvTEEg0VMNA1wKK5SQq3b2YGdqEg/UAdnjHEKRg6aGlMEPrIdBgGZ26mZ6+aF2GHucweu59HJWBHfBYD7IouuozKKW64TRKsOYLGB3IIXnsBKxKCfxGjdlD0A2jPBlFs0ptM8L6iKRJJPVkEgO5I8jbFJY9cRNvvtgMM70EerCIWiNB6RNErV+0S35gPcO0SoI2iYka82A1h4WaKKYL4QrzIekGvCiQJNFTE/ZDzJPWhiLFI+EaAmyb9KJnIofkizax2NImfX6vNzWrn2TOjNiY4UiVxBwxE3zkKuimsEz2st0jFER6tiWSf9XGEgWW3VtCKBdFIxuGl2BdmUi3U6YgpCWR8xAdj8PtApY2jKDGtmKhKITqsA4UMVbPYmdvH/p4vWFWkq/WAh8P9lJwuBipFREZeYxkO4QjyYuA/sOIVVlPl6RPgWI7sxSoPSwQhU2xB/FQAv2DxzBZ1Vo0Ftu/iWQ/BZxF6wKXUQvfzGfFcvE/LZVL2YiG4u9ZK4WruhIolB6ZnU+j/uUCnxeFIoVPV2oXlpeGETZrvEi40fLIMw/eV+1JwIpIGNLa4rkmrROvEUE5WMf1d1yD7/iRzuqHa4UOkZ8BFHIon7jCDuVS0eCmXCxnC22HtvuRj6Fr3y48fNn3Y+7wDCZTG7H02IfRGOpBbjaFdVP7Uds8hvihLHJbe0k5aThuBfUGGSXID5+a/Jy5eAZD+aO4wNuPaoQk30ttKZZGMxJGnkq1Fii6wDuM8Uav2acxSKKoeSFqYjleQ8Kp9arPKnSbJCbfJ5AWKbGzlQuKPQ4i3ayiECuYqdtG4+6KG1+2iK5IsqyHHAwrksNm3uz0wWIIjRrJNkxNlelpsNIPd5s1OpzoLBL+MuwsSSdvU1tn13c8OBQM0m5ZUeMjrk7znvVxTAU2saokA5GrFyCBiEi7jesoafZKbqBIcpA7QNDKINIeI9SSPQpIO19DsCy3Rg3h3kXMd13KLMKGNKWVhpp5kzca3Syri4YTxGjgOJxyDSWL5CrN1K+hJ7qAE8ELEKLwDC+V0ZhrMh/SU80yUTlmA+aaaI9lkiuhbwmBbD+CBQpVCg6nu4hA74SxFNhyyDOfNAV6hm2b1xZ+ZiVH0h/LE/GySLhlZCkwTTjhCsyMScch0bKZHF4bKsGrUdBp8JEZB3xq4bSGZLE4tTIVY1klqhuts0rQbPkmqm29PA0SP4l4WQtc0aLySOry19P6EaqOjblwnFq8asTLSfg2n1/z4Jhpa/nvI4klhGMUmnNb0EzwbZQbikk3NZNVfvUcBWG1BjdEi4bvRYRWTcQtwS+V8LI7LsQP/+itJu0Ozh0dIj9DyFf+oQ99yKxPrgiUc0GV2t7+z/4hDh61sTxyEpMnL8DH8pfgVbFP4MHgDqSmG/BTPnqD1F560ohF4xhrHITfWCG+KDsuO5wmAy02Uhgr76e2njR7XoZpwjrsKAm/hIXYELrLMyaWuRxMsO/KDUGqo0m/0ZpEteQg2u0iRCIVqcmqjtglEkgf7k18L4okrEygAquYRT1Draq5HjGUkGzSkK8twtHqiBUX+cA8UvMBFP0MevsXkKzQ5DdxzFJjBXZykk0+PAA3EEPMLyBazaIaT2CiOYBj1K4ztSX4JMaAS+FR8tAYLyJ4Scr4ph27iuPJK0iiQRTsMOKaqs7vlu/BKldxrDKArJU0rgdNsS+TzOK1EtbN7ceQdQTVQpmkR+LrqSCbDKJS1FQkywwGeiSYeNRD1aN+3ggbAREKeVisUesOk/zcrHEzJCM1LBW7sVDNUAumht2l6A4KowpJm/kGNNYorVO1ZbryP3uhYcTLS6g5S0jY1PwX00wrgnXhOVyb3E/CY9vlE9hZoUYtKcZ8XD6jnkqFz5oKhJ+UUWVIU+MiLRvMQ2ogg3hkDo1IFvO42jxfmxZTeWYRfbMngQQ1/RBJmEI8EaLlpBmX831oLpL0+UgUBx/xq0jmQU29QsumB878MnobtHaYlwmB5P9aqbLJVrcCVePuavQX0B2eRX7mQpRoFW0ceQgPNV+GYu/VSFSXkGFbTdMKUBRMxM5T0CXQsENGUVCbxBeLsGJ1ZO0I3nJtP37yHdfo5ehgDdAh8jOAptgrNlwLZp04cQJ/8Rd/gd7e3pWzLx4+O8hDf/mr+J25rciMXI7lgouNM59HuZGDVu9OU72KUG880r8DVZ9aMHpwuJygVtN6VCYEjB0k2vSxvXc/Igvyh1tm7QxNtlkspDE3noQ/moFVq1PzWqRGPoR8KCLdFlWSWpXavauJNhFpdiQLJW0ICAiNDCBSmcZ4Kc1ObCMeOIGKNUhVPYgxP0ezXJod80uk0Z8pYznLzl9apDkv858kzHMGrKeBSIqCohKgxsgym6VlKczma1EMRKkxs4aayahBMbteQbxIrbRQQqEvQy0QKNsshwidxMfaM/0WMcg1oqgdy22QhCPwXJKzSyIOsAxsw+VwF+tfxSZ7ARfEZuBHIyg4cfRYRdQoWMrhJLXLMIlrmVq3S620m78pkBoUGTJ65FTm7yjLpBpp0SjVyUzXV5X4kUvKUhlEetSoQ4rVlrOc5B7iswuyPCozAloxUBaK1kHxcKLZh8O1YXhl1pskKTeNoKV6jf+aRyTY5HMvgIRYpehiGWtWkNpuFGOYRIWE6CQpWAJaEdFFoUlBTgGmvJuJMMIU2MFsDQOlKeR7HIRJ4FrESsTv5aMsn4tqH6+lwA1JcydEB+ZxsTgmIofn9NtiyzQpZBx7EstdSXh2DGGvjmJtB2IU3IWGgwV7kNfKKmm1G2+ghUOrgJabnk+YgiPoeSiVfbzhpk34pXferCw7WAN0iPwM8NGPftRsLiFtXJN+NNX+pptuWjl7Nmjg//7vv8L/dQt42/Y4Ro58Ch8tXQ+3djG29JykRtyFzFIBSwODmO1NIZY7TrOdXYRaLvs1O7mFaqCf5ngXNlmHUJtgJ6+7JKogitt74bgeFkoZMrI0d5KjS2FAklkOkkhEsw3SFU3yZqj16Jtuy3wWtO5Ko5FH7kQRaS00ZZepjY5jKbfdDF5tqU8gxk5f606QlGwkB110kVJnT2h9bd+sI2J6vj7swFrpzw/TJCf7BiioEs0Japc2doVGsak8jXRGrpIW8csFUyfZhrIFKvMOvFSUlKDlAxLo8bUaX5T6KMlNZGHTTNf2cHx9/VjErCni5mMkH7aFfLpNx5TFd8Ksp1Z8DGCJBBSu5NCXPWlW+1NLRqrLaGycgFfr5ncXFWrzFebpWCIxtnSV8qtUheNRcy33UwiVjBsqFKvxfABuNcgy8Toyfyhl0TIYwDKv4yEKXnnBSOY0o1oWTwA9zSpJM08RpDDFIGKhMmKJEjsisFTtgh/xkIguoOR2IXC4Wx4Q8nIdOUpbrayohlU7lRIkVWrattwZdT7TGi0ZlZnCMOC6SHhLGCofZaOSiJl/jc+/zBvTHt+TvhgWymOIp/MUohQ6LGysNodS/yDcRNJEHdE0MJad1l9phNiuKw81Rg0+7uTYDh6Wm8OI0PJIgsI9zvakkFJamkTksvJGHLFMvh+CPZtDND1Dq9FGOe9i/ZVvwHVv7gx2rhU6RH4G0KzN7/qu76ImY6G7u9tM8InH4ytnzwIk2vv+96/geOFe5INXs8MAh48msNk7AStcQ3I2C7eXGpXrYybcTxN4FjFbwWguNaIaqtS8qjSfEwGSSzGEmVCSHZKE5gTQveBR46Y5Sy1bKxWGQza1RupIZJ+mHaTW6aMUVMyzwvxIMNLe5GDlaxCkppkOl+BRo4yX8oiWy0azbWiGHiXIohXFlNdrtDQRpnz0hb4+NGKe0cjrMWpf5PFgRW4GnuebFfRIuiyHNGiv2ETNsc3yqSO1HHY0jyOnnWii6vAsglRtkRE7upZZdSlgDFl3WfC6oiR0EibTzPppFOoJfl8ph5TJXmqMzF8WxzMg9zQcEqDtqHqo8/pQvQ5nabmludajRiBUuilsqFk2lDiZ049UzeCeeNMsBkYNvddbgL2xZohW4XvqNHJRsAQmoyafW6S5yGemXe8lalrX6BwVWckglj8IazGGIAWDBhBlWZkVBpmeCNAPS/DSQiKJ6p5g1oJToFad548C68/nqHvCtDKk93pWihfZiNFKCgZoragtmKlFTZnf+OFTUBsYASCepWZco9CNboAVq8LS2ACv9/mMFyeYJklWRK57Q1EXUa+IqpNEsc73RYKI/7EStJqM6KJlVoLTrJu6BijwKJGZnmWWrxXR+xWW2WP782XsotB2oJmrTdRLZWz9ntfi9j/5HVOuDs4dHSI/DTTBRzvna9KPFs+6/vrrz9lHLsP8vg/+Bg7+/iN4pOcGvHrdbviHl1H1HYxdWEbxaAS7RjPoW2ognmuFnrlXFPHIwXUkpiROdHehHOrFtYkJXB/ZjaNPdlGHbKInMIN4tYxaNI4umtueVELdWyPdRPh12xgGqkdQ7o6hsNxlpsxrIwUtZiX/eyjoIxWn/ZtwqaGRTBdJjCRZ7fSiFezS3fOmU2s7MZedtUnycKmBDldnqA1TLPSFUY43kSThOnIXkBhFLEyaFgGJZ6GJxaiFmWAMw4qNZqeXFV7Jk6hJBEFe25cvUiOPGB97kwdEHqV5H6FMGD7L6mmwV20on7GJMpEflzeyqloTJiwXAImr/VIrf7G4pb0sqxoRlEZLLTFJQZloIjdURLhKAVjQhYpYsU0sNVkSOWr0YQo97YwTSZRN7Ld885I6eoYSnpqcpczMErWEBF/Qq5HmqCHzOpW/yPbIRpKI03qxwxQkitNLKeqjDne5VcZYrcBnEULFjpEPwyRC37jAfIU9likFSPiqhzi52yKBUkAqOkV+elNFZS6+1kQdTexRzuJd3cMiN+Ur0lUkZLY2/yjKhBcoFj7q4FB9ELkc24RSsUUJAdabAr2+yHR4L/9X8uYMvzT1UFlnLec776xHfnAYoQqtlKJW0AzjpuARyh49hxwcTSIy71mrDF6tgnWXvRE3/pf/xd8drAU6RH4aaHcgRa088MADRiPXQJBmd2oW59lCOuPdD/0h9n50DxaKvUglM9jcvc+s8zEYmkXQreLJ8lZEIwtYly3DcUuoXkntPNpA/mgXmvspXMIx1HqHMLwtj+mJJg42+rClMo7J5DoMeHPUHINmp5aAFYQdSiPtzyDXuxmFRAKjJ59CPRRBM0391SXpN2kBqFAkRrfZjaX6MEliGXY5i2BXNxKREhozFVSW+mnKLyJaPYpsaAf7ZBjLfdvgzM8hTlN+3cRRHB8YBDI52BosJEMlWdvgtENNPGg6vFOxkMK4iaWXn0hvn9mFvk7tsq+IYsxFKpI1pF2lWmoshMNa1rYH63q1Kh81ZtZJGn6dpDlZ76aeF6G22aBQcZDXlnLU+LTyiVlbRcRB8h/tWkKFZcpSECHsse1SaJDASLsolnaQtzW42RrADC3VEO4Zh1fuxay/mWm70ISZgKbTl1mebAHd+XlqzbRqaFH4sQRSi8eNdq8ce5pTlIUOvLBLoeEh4pOMj5VYPe2uQw4PFMzs1lIpgi4/Sz6kNk7hWEr28bmEMdXXhcVAP5btNPyxHPJj/Wj4NlLUeOVeyYUp1Fg3N0yCZ9MpcscMUDKdZjWCxeImBELSlKWTKxKG5aQAadhhBBskV7a3BJZWzAzINeM3cUv0IRxtbMG0mzF+fxF3KuQjU5tiu1XRdFeEI8k47JUxkD3MZ1nCSWr3gxMn0Rur4GhozKwoGU9VcDg7ijFvGnP9W1lXCm2Svp5pU64VKgmv3rwe73797UqxgzVAh8hPg/YytpoQ9PKXv5zmvmsGOoOagneW8NghP/bl96G2+5N4unY9xvMpdC3HzYDRpvAU0oNLmF7qRrVsYWEsiWC1hg2lcYQvc7G/pw+xXBbJxSkSRga" @default.
- W3100684893 created "2020-11-23" @default.
- W3100684893 creator A5006068836 @default.
- W3100684893 creator A5017475112 @default.
- W3100684893 creator A5024139161 @default.
- W3100684893 creator A5027781676 @default.
- W3100684893 creator A5034279892 @default.
- W3100684893 creator A5043949808 @default.
- W3100684893 creator A5060301202 @default.
- W3100684893 creator A5074758253 @default.
- W3100684893 creator A5087269849 @default.
- W3100684893 creator A5090022166 @default.
- W3100684893 creator A5090591484 @default.
- W3100684893 date "2020-10-08" @default.
- W3100684893 modified "2023-10-14" @default.
- W3100684893 title "Investigating Possible Spindown of Arrokoth by Collisions with Small Classical Kuiper Belt Objects" @default.
- W3100684893 doi "https://doi.org/10.5194/epsc2020-553" @default.
- W3100684893 hasPublicationYear "2020" @default.
- W3100684893 type Work @default.
- W3100684893 sameAs 3100684893 @default.
- W3100684893 citedByCount "2" @default.
- W3100684893 countsByYear W31006848932021 @default.
- W3100684893 countsByYear W31006848932022 @default.
- W3100684893 crossrefType "posted-content" @default.
- W3100684893 hasAuthorship W3100684893A5006068836 @default.
- W3100684893 hasAuthorship W3100684893A5017475112 @default.
- W3100684893 hasAuthorship W3100684893A5024139161 @default.
- W3100684893 hasAuthorship W3100684893A5027781676 @default.
- W3100684893 hasAuthorship W3100684893A5034279892 @default.
- W3100684893 hasAuthorship W3100684893A5043949808 @default.
- W3100684893 hasAuthorship W3100684893A5060301202 @default.
- W3100684893 hasAuthorship W3100684893A5074758253 @default.
- W3100684893 hasAuthorship W3100684893A5087269849 @default.
- W3100684893 hasAuthorship W3100684893A5090022166 @default.
- W3100684893 hasAuthorship W3100684893A5090591484 @default.
- W3100684893 hasConcept C121332964 @default.
- W3100684893 hasConcept C12554922 @default.
- W3100684893 hasConcept C197129107 @default.
- W3100684893 hasConcept C23123220 @default.
- W3100684893 hasConcept C41008148 @default.
- W3100684893 hasConcept C44870925 @default.
- W3100684893 hasConcept C539450922 @default.
- W3100684893 hasConcept C75876914 @default.
- W3100684893 hasConcept C86803240 @default.
- W3100684893 hasConceptScore W3100684893C121332964 @default.
- W3100684893 hasConceptScore W3100684893C12554922 @default.
- W3100684893 hasConceptScore W3100684893C197129107 @default.
- W3100684893 hasConceptScore W3100684893C23123220 @default.
- W3100684893 hasConceptScore W3100684893C41008148 @default.
- W3100684893 hasConceptScore W3100684893C44870925 @default.
- W3100684893 hasConceptScore W3100684893C539450922 @default.
- W3100684893 hasConceptScore W3100684893C75876914 @default.
- W3100684893 hasConceptScore W3100684893C86803240 @default.
- W3100684893 hasLocation W31006848931 @default.
- W3100684893 hasOpenAccess W3100684893 @default.
- W3100684893 hasPrimaryLocation W31006848931 @default.
- W3100684893 hasRelatedWork W1944867018 @default.
- W3100684893 hasRelatedWork W2902782467 @default.
- W3100684893 hasRelatedWork W2935759653 @default.
- W3100684893 hasRelatedWork W3098999037 @default.
- W3100684893 hasRelatedWork W3105167352 @default.
- W3100684893 hasRelatedWork W4299949399 @default.
- W3100684893 hasRelatedWork W54078636 @default.
- W3100684893 hasRelatedWork W1501425562 @default.
- W3100684893 hasRelatedWork W2954470139 @default.
- W3100684893 hasRelatedWork W3084825885 @default.
- W3100684893 isParatext "false" @default.
- W3100684893 isRetracted "false" @default.
- W3100684893 magId "3100684893" @default.
- W3100684893 workType "article" @default.