Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100686023> ?p ?o ?g. }
- W3100686023 endingPage "5134" @default.
- W3100686023 startingPage "5121" @default.
- W3100686023 abstract "Many machine learning problems concern with discovering or associating common patterns in data of multiple views or modalities. Multi-view learning is of the methods to achieve such goals. Recent methods propose deep multi-view networks via adaptation of generic Deep Neural Networks (DNNs), which concatenate features of individual views at intermediate network layers (i.e., fusion layers). In this work, we study the problem of multi-view learning in such end-to-end networks. We take a regularization approach via multi-view learning criteria, and propose a novel, effective, and efficient neuron-wise correlation-maximizing regularizer. We implement our proposed regularizers collectively as a correlation-regularized network layer (CorrReg). CorrReg can be applied to either fully-connected or convolutional fusion layers, simply by replacing them with their CorrReg counterparts. By partitioning neurons of a hidden layer in generic DNNs into multiple subsets, we also consider a multi-view feature learning perspective of generic DNNs. Such a perspective enables us to study deep multi-view learning in the context of regularized network training, for which we present control experiments of benchmark image classification to show the efficacy of our proposed CorrReg. To investigate how CorrReg is useful for practical multi-view learning problems, we conduct experiments of RGB-D object/scene recognition and multi-view based 3D object recognition, using networks with fusion layers that concatenate intermediate features of individual modalities or views for subsequent classification. Applying CorrReg to fusion layers of these networks consistently improves classification performance. In particular, we achieve the new state of the art on the benchmark RGB-D object and RGB-D scene datasets. We make the implementation of CorrReg publicly available." @default.
- W3100686023 created "2020-11-23" @default.
- W3100686023 creator A5003920944 @default.
- W3100686023 creator A5032352025 @default.
- W3100686023 creator A5065964089 @default.
- W3100686023 creator A5074103823 @default.
- W3100686023 date "2019-10-01" @default.
- W3100686023 modified "2023-10-15" @default.
- W3100686023 title "Deep Multi-View Learning Using Neuron-Wise Correlation-Maximizing Regularizers" @default.
- W3100686023 cites W1573897183 @default.
- W3100686023 cites W1644641054 @default.
- W3100686023 cites W1923184257 @default.
- W3100686023 cites W2025341678 @default.
- W3100686023 cites W2035299679 @default.
- W3100686023 cites W2070961462 @default.
- W3100686023 cites W2076455317 @default.
- W3100686023 cites W2100235303 @default.
- W3100686023 cites W2112796928 @default.
- W3100686023 cites W2117539524 @default.
- W3100686023 cites W2130055251 @default.
- W3100686023 cites W2156222070 @default.
- W3100686023 cites W2194775991 @default.
- W3100686023 cites W2207044458 @default.
- W3100686023 cites W2444163375 @default.
- W3100686023 cites W2465570449 @default.
- W3100686023 cites W2507888500 @default.
- W3100686023 cites W2549139847 @default.
- W3100686023 cites W2552391848 @default.
- W3100686023 cites W2555690212 @default.
- W3100686023 cites W2592613168 @default.
- W3100686023 cites W2752585553 @default.
- W3100686023 cites W2798998662 @default.
- W3100686023 cites W2799162093 @default.
- W3100686023 cites W2893477965 @default.
- W3100686023 cites W2962724911 @default.
- W3100686023 cites W2963956866 @default.
- W3100686023 cites W2964342398 @default.
- W3100686023 doi "https://doi.org/10.1109/tip.2019.2912356" @default.
- W3100686023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31071032" @default.
- W3100686023 hasPublicationYear "2019" @default.
- W3100686023 type Work @default.
- W3100686023 sameAs 3100686023 @default.
- W3100686023 citedByCount "26" @default.
- W3100686023 countsByYear W31006860232020 @default.
- W3100686023 countsByYear W31006860232021 @default.
- W3100686023 countsByYear W31006860232022 @default.
- W3100686023 countsByYear W31006860232023 @default.
- W3100686023 crossrefType "journal-article" @default.
- W3100686023 hasAuthorship W3100686023A5003920944 @default.
- W3100686023 hasAuthorship W3100686023A5032352025 @default.
- W3100686023 hasAuthorship W3100686023A5065964089 @default.
- W3100686023 hasAuthorship W3100686023A5074103823 @default.
- W3100686023 hasBestOaLocation W31006860232 @default.
- W3100686023 hasConcept C108583219 @default.
- W3100686023 hasConcept C119857082 @default.
- W3100686023 hasConcept C12713177 @default.
- W3100686023 hasConcept C13280743 @default.
- W3100686023 hasConcept C151730666 @default.
- W3100686023 hasConcept C153180895 @default.
- W3100686023 hasConcept C154945302 @default.
- W3100686023 hasConcept C185798385 @default.
- W3100686023 hasConcept C205649164 @default.
- W3100686023 hasConcept C2776135515 @default.
- W3100686023 hasConcept C2779343474 @default.
- W3100686023 hasConcept C2984842247 @default.
- W3100686023 hasConcept C41008148 @default.
- W3100686023 hasConcept C50644808 @default.
- W3100686023 hasConcept C59404180 @default.
- W3100686023 hasConcept C81363708 @default.
- W3100686023 hasConcept C86803240 @default.
- W3100686023 hasConcept C97385483 @default.
- W3100686023 hasConceptScore W3100686023C108583219 @default.
- W3100686023 hasConceptScore W3100686023C119857082 @default.
- W3100686023 hasConceptScore W3100686023C12713177 @default.
- W3100686023 hasConceptScore W3100686023C13280743 @default.
- W3100686023 hasConceptScore W3100686023C151730666 @default.
- W3100686023 hasConceptScore W3100686023C153180895 @default.
- W3100686023 hasConceptScore W3100686023C154945302 @default.
- W3100686023 hasConceptScore W3100686023C185798385 @default.
- W3100686023 hasConceptScore W3100686023C205649164 @default.
- W3100686023 hasConceptScore W3100686023C2776135515 @default.
- W3100686023 hasConceptScore W3100686023C2779343474 @default.
- W3100686023 hasConceptScore W3100686023C2984842247 @default.
- W3100686023 hasConceptScore W3100686023C41008148 @default.
- W3100686023 hasConceptScore W3100686023C50644808 @default.
- W3100686023 hasConceptScore W3100686023C59404180 @default.
- W3100686023 hasConceptScore W3100686023C81363708 @default.
- W3100686023 hasConceptScore W3100686023C86803240 @default.
- W3100686023 hasConceptScore W3100686023C97385483 @default.
- W3100686023 hasFunder F4320321001 @default.
- W3100686023 hasIssue "10" @default.
- W3100686023 hasLocation W31006860231 @default.
- W3100686023 hasLocation W31006860232 @default.
- W3100686023 hasLocation W31006860233 @default.
- W3100686023 hasOpenAccess W3100686023 @default.
- W3100686023 hasPrimaryLocation W31006860231 @default.
- W3100686023 hasRelatedWork W2088610186 @default.
- W3100686023 hasRelatedWork W2773120646 @default.