Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100691678> ?p ?o ?g. }
- W3100691678 endingPage "6576" @default.
- W3100691678 startingPage "6576" @default.
- W3100691678 abstract "A hydraulic axial piston pump is the essential component of a hydraulic transmission system and plays a key role in modern industry. Considering varying working conditions and the implicity of frequent faults, it is difficult to accurately monitor the machinery faults in the actual operating process by using current fault diagnosis methods. Hence, it is urgent and significant to investigate effective and precise fault diagnosis approaches for pumps. Owing to the advantages of intelligent fault diagnosis methods in big data processing, methods based on deep learning have accomplished admirable performance for fault diagnosis of rotating machinery. The prevailing convolutional neural network (CNN) displays desirable automatic learning ability. Therefore, an integrated intelligent fault diagnosis method is proposed based on CNN and continuous wavelet transform (CWT), combining the feature extraction and classification. Firstly, CWT is used to convert the raw vibration signals into time-frequency representations and achieve the extraction of image features. Secondly, a new framework of deep CNN is established via designing the convolutional layers and sub-sampling layers. The learning process and results are visualized by t-distributed stochastic neighbor embedding (t-SNE). The results of the experiment present a higher classification accuracy compared with other models. It is demonstrated that the proposed approach is effective and stable for fault diagnosis of a hydraulic axial piston pump." @default.
- W3100691678 created "2020-11-23" @default.
- W3100691678 creator A5007263180 @default.
- W3100691678 creator A5013056501 @default.
- W3100691678 creator A5017180879 @default.
- W3100691678 creator A5070288761 @default.
- W3100691678 date "2020-11-18" @default.
- W3100691678 modified "2023-10-12" @default.
- W3100691678 title "An Integrated Deep Learning Method towards Fault Diagnosis of Hydraulic Axial Piston Pump" @default.
- W3100691678 cites W1878305606 @default.
- W3100691678 cites W2009517014 @default.
- W3100691678 cites W2011426234 @default.
- W3100691678 cites W2053741029 @default.
- W3100691678 cites W2073737879 @default.
- W3100691678 cites W2074436702 @default.
- W3100691678 cites W2086913204 @default.
- W3100691678 cites W2126584714 @default.
- W3100691678 cites W2471080557 @default.
- W3100691678 cites W2504909090 @default.
- W3100691678 cites W2513828693 @default.
- W3100691678 cites W2621019941 @default.
- W3100691678 cites W2746111230 @default.
- W3100691678 cites W2765284480 @default.
- W3100691678 cites W2768753204 @default.
- W3100691678 cites W2794869810 @default.
- W3100691678 cites W2796122488 @default.
- W3100691678 cites W2810292802 @default.
- W3100691678 cites W2898760173 @default.
- W3100691678 cites W2905281262 @default.
- W3100691678 cites W2911418581 @default.
- W3100691678 cites W2911725274 @default.
- W3100691678 cites W2922660557 @default.
- W3100691678 cites W2940918616 @default.
- W3100691678 cites W2956467153 @default.
- W3100691678 cites W2963175197 @default.
- W3100691678 cites W2964294029 @default.
- W3100691678 cites W2968409655 @default.
- W3100691678 cites W2978144367 @default.
- W3100691678 cites W2991632793 @default.
- W3100691678 cites W2997353220 @default.
- W3100691678 cites W3007147745 @default.
- W3100691678 cites W3008309516 @default.
- W3100691678 cites W3009747427 @default.
- W3100691678 cites W3020432805 @default.
- W3100691678 cites W3021827168 @default.
- W3100691678 cites W3025026054 @default.
- W3100691678 cites W3033043953 @default.
- W3100691678 cites W3037334127 @default.
- W3100691678 cites W3043650873 @default.
- W3100691678 cites W3044930641 @default.
- W3100691678 cites W3046192825 @default.
- W3100691678 cites W3047005573 @default.
- W3100691678 cites W3048796145 @default.
- W3100691678 cites W3082542612 @default.
- W3100691678 cites W3082957997 @default.
- W3100691678 cites W3083789190 @default.
- W3100691678 cites W3088411073 @default.
- W3100691678 cites W3090682168 @default.
- W3100691678 cites W3091675418 @default.
- W3100691678 doi "https://doi.org/10.3390/s20226576" @default.
- W3100691678 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7698801" @default.
- W3100691678 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33217911" @default.
- W3100691678 hasPublicationYear "2020" @default.
- W3100691678 type Work @default.
- W3100691678 sameAs 3100691678 @default.
- W3100691678 citedByCount "22" @default.
- W3100691678 countsByYear W31006916782021 @default.
- W3100691678 countsByYear W31006916782022 @default.
- W3100691678 countsByYear W31006916782023 @default.
- W3100691678 crossrefType "journal-article" @default.
- W3100691678 hasAuthorship W3100691678A5007263180 @default.
- W3100691678 hasAuthorship W3100691678A5013056501 @default.
- W3100691678 hasAuthorship W3100691678A5017180879 @default.
- W3100691678 hasAuthorship W3100691678A5070288761 @default.
- W3100691678 hasBestOaLocation W31006916781 @default.
- W3100691678 hasConcept C108583219 @default.
- W3100691678 hasConcept C111919701 @default.
- W3100691678 hasConcept C11394606 @default.
- W3100691678 hasConcept C119857082 @default.
- W3100691678 hasConcept C127313418 @default.
- W3100691678 hasConcept C127413603 @default.
- W3100691678 hasConcept C153180895 @default.
- W3100691678 hasConcept C154945302 @default.
- W3100691678 hasConcept C165205528 @default.
- W3100691678 hasConcept C175551986 @default.
- W3100691678 hasConcept C41008148 @default.
- W3100691678 hasConcept C47432892 @default.
- W3100691678 hasConcept C52622490 @default.
- W3100691678 hasConcept C78519656 @default.
- W3100691678 hasConcept C81363708 @default.
- W3100691678 hasConcept C98045186 @default.
- W3100691678 hasConceptScore W3100691678C108583219 @default.
- W3100691678 hasConceptScore W3100691678C111919701 @default.
- W3100691678 hasConceptScore W3100691678C11394606 @default.
- W3100691678 hasConceptScore W3100691678C119857082 @default.
- W3100691678 hasConceptScore W3100691678C127313418 @default.
- W3100691678 hasConceptScore W3100691678C127413603 @default.
- W3100691678 hasConceptScore W3100691678C153180895 @default.