Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100692372> ?p ?o ?g. }
- W3100692372 endingPage "5160" @default.
- W3100692372 startingPage "5148" @default.
- W3100692372 abstract "Short bursts of repeating patterns [intervals of recurrence (IoR)] manifest themselves in many applications, such as in the time-series data captured from an athlete's movements using a wearable sensor while performing exercises. We present an efficient, online, one-pass, and real-time algorithm for finding and tracking IoR in a time-series data stream. We provide a detailed theoretical analysis of the behavior of any IoR and derive fundamental properties that can be used on real-world data streams. We show that why our method, unlike current state-of-the-art techniques, is robust to variations in repeats of the same pattern adjacent to each other. To evaluate our algorithm, we build a wearable device that runs our algorithm to conduct a user study. Our results show that our algorithm can detect intervals of repeating activities on edge devices with high accuracy (over 70% F1 -Score) and in a real-time environment with only a 1.5-s lag. Our experimental results from real-world datasets demonstrate that our approach outperforms state-of-the-art algorithms in both accuracy and robustness to variations of the signal of recurrence." @default.
- W3100692372 created "2020-11-23" @default.
- W3100692372 creator A5001645149 @default.
- W3100692372 creator A5010832827 @default.
- W3100692372 creator A5015416685 @default.
- W3100692372 creator A5041252718 @default.
- W3100692372 creator A5087672786 @default.
- W3100692372 date "2022-06-01" @default.
- W3100692372 modified "2023-10-13" @default.
- W3100692372 title "An Online Unsupervised Dynamic Window Method to Track Repeating Patterns From Sensor Data" @default.
- W3100692372 cites W1551765785 @default.
- W3100692372 cites W1712920919 @default.
- W3100692372 cites W1975132351 @default.
- W3100692372 cites W1987522330 @default.
- W3100692372 cites W1988879366 @default.
- W3100692372 cites W1991239827 @default.
- W3100692372 cites W1991808891 @default.
- W3100692372 cites W2005854596 @default.
- W3100692372 cites W2006761268 @default.
- W3100692372 cites W2023302299 @default.
- W3100692372 cites W2030307856 @default.
- W3100692372 cites W2037537012 @default.
- W3100692372 cites W2040508267 @default.
- W3100692372 cites W2050230532 @default.
- W3100692372 cites W2054780155 @default.
- W3100692372 cites W2077760583 @default.
- W3100692372 cites W2081681829 @default.
- W3100692372 cites W2089409887 @default.
- W3100692372 cites W2092012469 @default.
- W3100692372 cites W2092224475 @default.
- W3100692372 cites W2099829076 @default.
- W3100692372 cites W2103705520 @default.
- W3100692372 cites W2115877181 @default.
- W3100692372 cites W2131641104 @default.
- W3100692372 cites W2134120396 @default.
- W3100692372 cites W2138347945 @default.
- W3100692372 cites W2158881251 @default.
- W3100692372 cites W2164274563 @default.
- W3100692372 cites W2219995598 @default.
- W3100692372 cites W2307131650 @default.
- W3100692372 cites W2325937488 @default.
- W3100692372 cites W2343142751 @default.
- W3100692372 cites W2397022327 @default.
- W3100692372 cites W2568772110 @default.
- W3100692372 cites W2571184881 @default.
- W3100692372 cites W2584499795 @default.
- W3100692372 cites W2768166719 @default.
- W3100692372 cites W2771203716 @default.
- W3100692372 cites W2883872667 @default.
- W3100692372 cites W3010246639 @default.
- W3100692372 cites W3105276629 @default.
- W3100692372 cites W4234531549 @default.
- W3100692372 cites W4239167631 @default.
- W3100692372 cites W89622671 @default.
- W3100692372 doi "https://doi.org/10.1109/tcyb.2020.3027714" @default.
- W3100692372 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33175686" @default.
- W3100692372 hasPublicationYear "2022" @default.
- W3100692372 type Work @default.
- W3100692372 sameAs 3100692372 @default.
- W3100692372 citedByCount "3" @default.
- W3100692372 countsByYear W31006923722021 @default.
- W3100692372 countsByYear W31006923722022 @default.
- W3100692372 countsByYear W31006923722023 @default.
- W3100692372 crossrefType "journal-article" @default.
- W3100692372 hasAuthorship W3100692372A5001645149 @default.
- W3100692372 hasAuthorship W3100692372A5010832827 @default.
- W3100692372 hasAuthorship W3100692372A5015416685 @default.
- W3100692372 hasAuthorship W3100692372A5041252718 @default.
- W3100692372 hasAuthorship W3100692372A5087672786 @default.
- W3100692372 hasConcept C102392041 @default.
- W3100692372 hasConcept C104317684 @default.
- W3100692372 hasConcept C111919701 @default.
- W3100692372 hasConcept C11413529 @default.
- W3100692372 hasConcept C124101348 @default.
- W3100692372 hasConcept C143724316 @default.
- W3100692372 hasConcept C149635348 @default.
- W3100692372 hasConcept C150594956 @default.
- W3100692372 hasConcept C151730666 @default.
- W3100692372 hasConcept C153180895 @default.
- W3100692372 hasConcept C154945302 @default.
- W3100692372 hasConcept C185592680 @default.
- W3100692372 hasConcept C2778484313 @default.
- W3100692372 hasConcept C2778751112 @default.
- W3100692372 hasConcept C41008148 @default.
- W3100692372 hasConcept C55493867 @default.
- W3100692372 hasConcept C63479239 @default.
- W3100692372 hasConcept C76155785 @default.
- W3100692372 hasConcept C86803240 @default.
- W3100692372 hasConcept C89198739 @default.
- W3100692372 hasConceptScore W3100692372C102392041 @default.
- W3100692372 hasConceptScore W3100692372C104317684 @default.
- W3100692372 hasConceptScore W3100692372C111919701 @default.
- W3100692372 hasConceptScore W3100692372C11413529 @default.
- W3100692372 hasConceptScore W3100692372C124101348 @default.
- W3100692372 hasConceptScore W3100692372C143724316 @default.
- W3100692372 hasConceptScore W3100692372C149635348 @default.
- W3100692372 hasConceptScore W3100692372C150594956 @default.
- W3100692372 hasConceptScore W3100692372C151730666 @default.