Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100694470> ?p ?o ?g. }
- W3100694470 endingPage "36" @default.
- W3100694470 startingPage "197" @default.
- W3100694470 abstract "This paper presents the method of mining the data and which contains the information about the large information about the PR (Panchayat Raj Department)of Orissa.We have focused some of the techniques,approaches and different methodologies of the demand forecasting. Every organizations are operated in different places of the country. Each place of operation may generate a huge amount of data. In an organization, worker prediction is the difficult task of the manager. It is the complex process not only because its nature of feature prediction but also various approaches methodologies always makes user confused. This paper aims to deal with the problem selection process. In this paper we have used some of the approaches from literature are been introduced and analyzed to find its suitable organization and situation. Based on this we have designed with automatic selection function to help users make a prejudgment. This information about each approach will be showed to users with examples to help understanding. This system also provides calculation function to help users work out a predication result. Generally the new developed system has a more comprehensive functions compared with existing ones. It aims to improve the accuracy of demand forecasting by implementing the forecasting algorithm. While it is still a decision support system with no ability of make the final judgment.This type of huge amount of data are are available in the form of different ways which has drastically changed in the areas of science and engineering.To analyze, manage and make a decision of such type of huge amount of data we need techniques called the data mining which will transforming in many fields. We have implemented the algorithms in JAVA technology. This paper provides the prediction algorithm Linear Regression, result which will helpful in the further research." @default.
- W3100694470 created "2020-11-23" @default.
- W3100694470 creator A5034272841 @default.
- W3100694470 date "2012-10-31" @default.
- W3100694470 modified "2023-10-18" @default.
- W3100694470 title "Data Mining: A prediction Technique for the workers in the PR Department of Orissa (Block and Panchayat)" @default.
- W3100694470 cites W1509665031 @default.
- W3100694470 cites W1528113134 @default.
- W3100694470 cites W1539666354 @default.
- W3100694470 cites W1542556500 @default.
- W3100694470 cites W1570448133 @default.
- W3100694470 cites W1578935707 @default.
- W3100694470 cites W1590654888 @default.
- W3100694470 cites W1596290048 @default.
- W3100694470 cites W1671614046 @default.
- W3100694470 cites W1788690991 @default.
- W3100694470 cites W1912123407 @default.
- W3100694470 cites W1978515644 @default.
- W3100694470 cites W2111746072 @default.
- W3100694470 cites W2123911299 @default.
- W3100694470 cites W2125055259 @default.
- W3100694470 cites W2132224836 @default.
- W3100694470 cites W2139907081 @default.
- W3100694470 cites W2140559951 @default.
- W3100694470 cites W2163598528 @default.
- W3100694470 cites W2185231388 @default.
- W3100694470 cites W2188778096 @default.
- W3100694470 cites W2339253661 @default.
- W3100694470 cites W2520740126 @default.
- W3100694470 cites W2592974517 @default.
- W3100694470 cites W2963982993 @default.
- W3100694470 cites W3199345633 @default.
- W3100694470 cites W2885608938 @default.
- W3100694470 doi "https://doi.org/10.5121/ijcseit.2012.2503" @default.
- W3100694470 hasPublicationYear "2012" @default.
- W3100694470 type Work @default.
- W3100694470 sameAs 3100694470 @default.
- W3100694470 citedByCount "2" @default.
- W3100694470 countsByYear W31006944702021 @default.
- W3100694470 crossrefType "journal-article" @default.
- W3100694470 hasAuthorship W3100694470A5034272841 @default.
- W3100694470 hasBestOaLocation W31006944701 @default.
- W3100694470 hasConcept C111919701 @default.
- W3100694470 hasConcept C119857082 @default.
- W3100694470 hasConcept C124101348 @default.
- W3100694470 hasConcept C127413603 @default.
- W3100694470 hasConcept C14036430 @default.
- W3100694470 hasConcept C148483581 @default.
- W3100694470 hasConcept C18762648 @default.
- W3100694470 hasConcept C201995342 @default.
- W3100694470 hasConcept C2522767166 @default.
- W3100694470 hasConcept C2524010 @default.
- W3100694470 hasConcept C2777210771 @default.
- W3100694470 hasConcept C2780451532 @default.
- W3100694470 hasConcept C33923547 @default.
- W3100694470 hasConcept C41008148 @default.
- W3100694470 hasConcept C42475967 @default.
- W3100694470 hasConcept C78458016 @default.
- W3100694470 hasConcept C78519656 @default.
- W3100694470 hasConcept C81917197 @default.
- W3100694470 hasConcept C86803240 @default.
- W3100694470 hasConcept C98045186 @default.
- W3100694470 hasConceptScore W3100694470C111919701 @default.
- W3100694470 hasConceptScore W3100694470C119857082 @default.
- W3100694470 hasConceptScore W3100694470C124101348 @default.
- W3100694470 hasConceptScore W3100694470C127413603 @default.
- W3100694470 hasConceptScore W3100694470C14036430 @default.
- W3100694470 hasConceptScore W3100694470C148483581 @default.
- W3100694470 hasConceptScore W3100694470C18762648 @default.
- W3100694470 hasConceptScore W3100694470C201995342 @default.
- W3100694470 hasConceptScore W3100694470C2522767166 @default.
- W3100694470 hasConceptScore W3100694470C2524010 @default.
- W3100694470 hasConceptScore W3100694470C2777210771 @default.
- W3100694470 hasConceptScore W3100694470C2780451532 @default.
- W3100694470 hasConceptScore W3100694470C33923547 @default.
- W3100694470 hasConceptScore W3100694470C41008148 @default.
- W3100694470 hasConceptScore W3100694470C42475967 @default.
- W3100694470 hasConceptScore W3100694470C78458016 @default.
- W3100694470 hasConceptScore W3100694470C78519656 @default.
- W3100694470 hasConceptScore W3100694470C81917197 @default.
- W3100694470 hasConceptScore W3100694470C86803240 @default.
- W3100694470 hasConceptScore W3100694470C98045186 @default.
- W3100694470 hasIssue "5" @default.
- W3100694470 hasLocation W31006944701 @default.
- W3100694470 hasLocation W31006944702 @default.
- W3100694470 hasOpenAccess W3100694470 @default.
- W3100694470 hasPrimaryLocation W31006944701 @default.
- W3100694470 hasRelatedWork W1607472309 @default.
- W3100694470 hasRelatedWork W2081647779 @default.
- W3100694470 hasRelatedWork W2300123279 @default.
- W3100694470 hasRelatedWork W2372861849 @default.
- W3100694470 hasRelatedWork W2389015757 @default.
- W3100694470 hasRelatedWork W2477517397 @default.
- W3100694470 hasRelatedWork W2606073172 @default.
- W3100694470 hasRelatedWork W2955698379 @default.
- W3100694470 hasRelatedWork W2963260880 @default.
- W3100694470 hasRelatedWork W3118295188 @default.
- W3100694470 hasVolume "2" @default.