Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100704871> ?p ?o ?g. }
- W3100704871 endingPage "2028" @default.
- W3100704871 startingPage "1990" @default.
- W3100704871 abstract "This paper presents a detailed theoretical analysis of the three stochastic approximation proximal gradient algorithms proposed in our companion paper [A. F. Vidal et al., SIAM J. Imaging Sci., 13 (2020), pp. 1945--1989] to set regularization parameters by marginal maximum likelihood estimation. We prove the convergence of a more general stochastic approximation scheme that includes the three algorithms of [A. F. Vidal et al., SIAM J. Imaging Sci., 13 (2020), pp. 1945--1989] as special cases. This includes asymptotic and nonasymptotic convergence results with natural and easily verifiable conditions, as well as explicit bounds on the convergence rates. Importantly, the theory is also general in that it can be applied to other intractable optimization problems. A main novelty of the work is that the stochastic gradient estimates of our scheme are constructed from inexact proximal Markov chain Monte Carlo samplers. This allows the use of samplers that scale efficiently to large problems and for which we have precise theoretical guarantees." @default.
- W3100704871 created "2020-11-23" @default.
- W3100704871 creator A5036096413 @default.
- W3100704871 creator A5050614717 @default.
- W3100704871 creator A5050957190 @default.
- W3100704871 creator A5082169271 @default.
- W3100704871 date "2020-01-01" @default.
- W3100704871 modified "2023-10-17" @default.
- W3100704871 title "Maximum Likelihood Estimation of Regularization Parameters in High-Dimensional Inverse Problems: An Empirical Bayesian Approach. Part II: Theoretical Analysis" @default.
- W3100704871 cites W1925324463 @default.
- W3100704871 cites W1967049706 @default.
- W3100704871 cites W1983452151 @default.
- W3100704871 cites W1994616650 @default.
- W3100704871 cites W2003268963 @default.
- W3100704871 cites W2007854530 @default.
- W3100704871 cites W2009797711 @default.
- W3100704871 cites W2021046129 @default.
- W3100704871 cites W2086161653 @default.
- W3100704871 cites W2090340215 @default.
- W3100704871 cites W2102019642 @default.
- W3100704871 cites W2163886442 @default.
- W3100704871 cites W2189938900 @default.
- W3100704871 cites W2222154095 @default.
- W3100704871 cites W2405803404 @default.
- W3100704871 cites W2474462684 @default.
- W3100704871 cites W2566924527 @default.
- W3100704871 cites W2591423585 @default.
- W3100704871 cites W260788981 @default.
- W3100704871 cites W2698133761 @default.
- W3100704871 cites W2963270586 @default.
- W3100704871 cites W2963507583 @default.
- W3100704871 cites W2963599479 @default.
- W3100704871 cites W2963911769 @default.
- W3100704871 cites W2963952014 @default.
- W3100704871 cites W2972965199 @default.
- W3100704871 cites W2980398138 @default.
- W3100704871 cites W3100735547 @default.
- W3100704871 cites W4250955649 @default.
- W3100704871 cites W4299557478 @default.
- W3100704871 doi "https://doi.org/10.1137/20m1339842" @default.
- W3100704871 hasPublicationYear "2020" @default.
- W3100704871 type Work @default.
- W3100704871 sameAs 3100704871 @default.
- W3100704871 citedByCount "9" @default.
- W3100704871 countsByYear W31007048712020 @default.
- W3100704871 countsByYear W31007048712021 @default.
- W3100704871 countsByYear W31007048712022 @default.
- W3100704871 countsByYear W31007048712023 @default.
- W3100704871 crossrefType "journal-article" @default.
- W3100704871 hasAuthorship W3100704871A5036096413 @default.
- W3100704871 hasAuthorship W3100704871A5050614717 @default.
- W3100704871 hasAuthorship W3100704871A5050957190 @default.
- W3100704871 hasAuthorship W3100704871A5082169271 @default.
- W3100704871 hasConcept C105795698 @default.
- W3100704871 hasConcept C111350023 @default.
- W3100704871 hasConcept C11413529 @default.
- W3100704871 hasConcept C126255220 @default.
- W3100704871 hasConcept C127162648 @default.
- W3100704871 hasConcept C134306372 @default.
- W3100704871 hasConcept C135252773 @default.
- W3100704871 hasConcept C154945302 @default.
- W3100704871 hasConcept C162324750 @default.
- W3100704871 hasConcept C19499675 @default.
- W3100704871 hasConcept C207467116 @default.
- W3100704871 hasConcept C2524010 @default.
- W3100704871 hasConcept C2776135515 @default.
- W3100704871 hasConcept C2777303404 @default.
- W3100704871 hasConcept C28826006 @default.
- W3100704871 hasConcept C31258907 @default.
- W3100704871 hasConcept C33923547 @default.
- W3100704871 hasConcept C41008148 @default.
- W3100704871 hasConcept C50522688 @default.
- W3100704871 hasConcept C57869625 @default.
- W3100704871 hasConcept C98763669 @default.
- W3100704871 hasConceptScore W3100704871C105795698 @default.
- W3100704871 hasConceptScore W3100704871C111350023 @default.
- W3100704871 hasConceptScore W3100704871C11413529 @default.
- W3100704871 hasConceptScore W3100704871C126255220 @default.
- W3100704871 hasConceptScore W3100704871C127162648 @default.
- W3100704871 hasConceptScore W3100704871C134306372 @default.
- W3100704871 hasConceptScore W3100704871C135252773 @default.
- W3100704871 hasConceptScore W3100704871C154945302 @default.
- W3100704871 hasConceptScore W3100704871C162324750 @default.
- W3100704871 hasConceptScore W3100704871C19499675 @default.
- W3100704871 hasConceptScore W3100704871C207467116 @default.
- W3100704871 hasConceptScore W3100704871C2524010 @default.
- W3100704871 hasConceptScore W3100704871C2776135515 @default.
- W3100704871 hasConceptScore W3100704871C2777303404 @default.
- W3100704871 hasConceptScore W3100704871C28826006 @default.
- W3100704871 hasConceptScore W3100704871C31258907 @default.
- W3100704871 hasConceptScore W3100704871C33923547 @default.
- W3100704871 hasConceptScore W3100704871C41008148 @default.
- W3100704871 hasConceptScore W3100704871C50522688 @default.
- W3100704871 hasConceptScore W3100704871C57869625 @default.
- W3100704871 hasConceptScore W3100704871C98763669 @default.
- W3100704871 hasFunder F4320334627 @default.
- W3100704871 hasIssue "4" @default.
- W3100704871 hasLocation W31007048711 @default.