Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100756904> ?p ?o ?g. }
- W3100756904 endingPage "47" @default.
- W3100756904 startingPage "1" @default.
- W3100756904 abstract "In this review we provide a rigorous and self-contained presentation of one-body reduced density-matrix (1RDM) functional theory. We do so for the case of a finite basis set, where density-functional theory (DFT) implicitly becomes a 1RDM functional theory. To avoid non-uniqueness issues we consider the case of fermionic and bosonic systems at elevated temperature and variable particle number, i.e, a grand-canonical ensemble. For the fermionic case the Fock space is finite-dimensional due to the Pauli principle and we can provide a rigorous 1RDM functional theory relatively straightforwardly. For the bosonic case, where arbitrarily many particles can occupy a single state, the Fock space is infinite-dimensional and mathematical subtleties (not every hermitian Hamiltonian is self-adjoint, expectation values can become infinite, and not every self-adjoint Hamiltonian has a Gibbs state) make it necessary to impose restrictions on the allowed Hamiltonians and external non-local potentials. For simple conditions on the interaction of the bosons a rigorous 1RDM functional theory can be established, where we exploit the fact that due to the finite one-particle space all 1RDMs are finite-dimensional. We also discuss the problems arising from 1RDM functional theory as well as DFT formulated for an infinite-dimensional one-particle space." @default.
- W3100756904 created "2020-11-23" @default.
- W3100756904 creator A5014855414 @default.
- W3100756904 creator A5015947739 @default.
- W3100756904 date "2019-05-01" @default.
- W3100756904 modified "2023-10-16" @default.
- W3100756904 title "One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures" @default.
- W3100756904 cites W1485300768 @default.
- W3100756904 cites W1507626481 @default.
- W3100756904 cites W1523544085 @default.
- W3100756904 cites W1530265266 @default.
- W3100756904 cites W1554521867 @default.
- W3100756904 cites W1573369347 @default.
- W3100756904 cites W1963764093 @default.
- W3100756904 cites W1969106030 @default.
- W3100756904 cites W1974092948 @default.
- W3100756904 cites W1975178199 @default.
- W3100756904 cites W1975613135 @default.
- W3100756904 cites W1975679469 @default.
- W3100756904 cites W1976803937 @default.
- W3100756904 cites W1978365214 @default.
- W3100756904 cites W1981565767 @default.
- W3100756904 cites W1982358147 @default.
- W3100756904 cites W1983384197 @default.
- W3100756904 cites W1983824836 @default.
- W3100756904 cites W1983869213 @default.
- W3100756904 cites W1986627464 @default.
- W3100756904 cites W1989025134 @default.
- W3100756904 cites W1990688759 @default.
- W3100756904 cites W1992286999 @default.
- W3100756904 cites W1993574974 @default.
- W3100756904 cites W1998549796 @default.
- W3100756904 cites W2002127691 @default.
- W3100756904 cites W2003716767 @default.
- W3100756904 cites W2004354241 @default.
- W3100756904 cites W2004544970 @default.
- W3100756904 cites W2009435847 @default.
- W3100756904 cites W2011303764 @default.
- W3100756904 cites W2012349011 @default.
- W3100756904 cites W2014209007 @default.
- W3100756904 cites W2014240382 @default.
- W3100756904 cites W2018541907 @default.
- W3100756904 cites W2018763953 @default.
- W3100756904 cites W2021576963 @default.
- W3100756904 cites W2021809012 @default.
- W3100756904 cites W2026275262 @default.
- W3100756904 cites W2027542179 @default.
- W3100756904 cites W2027689770 @default.
- W3100756904 cites W2027885502 @default.
- W3100756904 cites W2030976617 @default.
- W3100756904 cites W2031963449 @default.
- W3100756904 cites W2032001022 @default.
- W3100756904 cites W2038372176 @default.
- W3100756904 cites W2041020774 @default.
- W3100756904 cites W2041598933 @default.
- W3100756904 cites W2041809867 @default.
- W3100756904 cites W2043697437 @default.
- W3100756904 cites W2046437106 @default.
- W3100756904 cites W2046505599 @default.
- W3100756904 cites W2050729144 @default.
- W3100756904 cites W2054554043 @default.
- W3100756904 cites W2054839455 @default.
- W3100756904 cites W2055281720 @default.
- W3100756904 cites W2058398316 @default.
- W3100756904 cites W2059799037 @default.
- W3100756904 cites W2060442744 @default.
- W3100756904 cites W2062714052 @default.
- W3100756904 cites W2063798031 @default.
- W3100756904 cites W2064655967 @default.
- W3100756904 cites W2065773944 @default.
- W3100756904 cites W2067231076 @default.
- W3100756904 cites W2067820792 @default.
- W3100756904 cites W2069216343 @default.
- W3100756904 cites W2069444394 @default.
- W3100756904 cites W2073672585 @default.
- W3100756904 cites W2075087981 @default.
- W3100756904 cites W2077278249 @default.
- W3100756904 cites W2077388143 @default.
- W3100756904 cites W2078175789 @default.
- W3100756904 cites W2078710135 @default.
- W3100756904 cites W2083154822 @default.
- W3100756904 cites W2084612109 @default.
- W3100756904 cites W2087011152 @default.
- W3100756904 cites W2087883612 @default.
- W3100756904 cites W2090200743 @default.
- W3100756904 cites W2092963101 @default.
- W3100756904 cites W2098614082 @default.
- W3100756904 cites W2099159509 @default.
- W3100756904 cites W2106315897 @default.
- W3100756904 cites W2110769624 @default.
- W3100756904 cites W2111931190 @default.
- W3100756904 cites W2117655845 @default.
- W3100756904 cites W2118288095 @default.
- W3100756904 cites W2126415540 @default.
- W3100756904 cites W2131608429 @default.
- W3100756904 cites W2141135872 @default.
- W3100756904 cites W2141742048 @default.
- W3100756904 cites W2147247067 @default.