Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100757434> ?p ?o ?g. }
- W3100757434 abstract "Abstract Peptide-protein interactions (PepPIs) are involved in various fundamental cellular functions and their identification is crucial for designing efficacious peptide therapeutics. To facilitate the peptide drug discovery process, a number of computational methods have been developed to predict peptide-protein interactions. However, most of the existing prediction approaches heavily depend on high-resolution structure data. Although several deep-learning-based frameworks have been proposed to predict compound-protein interactions or protein-protein interactions, few of them are particularly designed to specifically predict peptide-protein interactions. In this paper, We present a sequence-based C onvolutional A ttention-based neural network for M ultifaceted prediction of P eptide-protein interactions, called CAMP , including predicting binary peptide-protein interactions and corresponding binding residues in the peptides. We also construct a benchmark dataset containing high-quality peptide-protein interaction pairs with the corresponding peptide binding residues for model training and evaluation. CAMP incorporates convolution neural network architectures and attention mechanism to fully exploit informative sequence-based features, including secondary structures, physicochemical properties, intrinsic disorder features and position-specific scoring matrix of the protein. Systematical evaluation of our benchmark dataset demonstrates that CAMP outperforms the state-of-the-art baseline methods on binary peptide-protein interaction prediction. In addition, CAMP can successfully identify the binding residues involved non-covalent interactions for peptides. These results indicate that CAMP can serve as a useful tool in peptide-protein interaction prediction and peptide binding site identification, which can thus greatly facilitate the peptide drug discovery process. The source code of CAMP can be found in https://github.com/twopin/CAMP ." @default.
- W3100757434 created "2020-11-23" @default.
- W3100757434 creator A5009826239 @default.
- W3100757434 creator A5019584640 @default.
- W3100757434 creator A5040629308 @default.
- W3100757434 creator A5045213879 @default.
- W3100757434 creator A5054469496 @default.
- W3100757434 creator A5067578751 @default.
- W3100757434 creator A5076576399 @default.
- W3100757434 creator A5090587530 @default.
- W3100757434 date "2020-11-16" @default.
- W3100757434 modified "2023-10-16" @default.
- W3100757434 title "CAMP: a Convolutional Attention-based Neural Network for Multifaceted Peptide-protein Interaction Prediction" @default.
- W3100757434 cites W1976526581 @default.
- W3100757434 cites W1992450378 @default.
- W3100757434 cites W1992983658 @default.
- W3100757434 cites W2009313526 @default.
- W3100757434 cites W2049091299 @default.
- W3100757434 cites W2096495474 @default.
- W3100757434 cites W2115133023 @default.
- W3100757434 cites W2130479394 @default.
- W3100757434 cites W2131474431 @default.
- W3100757434 cites W2137052779 @default.
- W3100757434 cites W2143094533 @default.
- W3100757434 cites W2148315081 @default.
- W3100757434 cites W2156407548 @default.
- W3100757434 cites W2158714788 @default.
- W3100757434 cites W2161922860 @default.
- W3100757434 cites W2170146596 @default.
- W3100757434 cites W2189707966 @default.
- W3100757434 cites W2256553158 @default.
- W3100757434 cites W2744129621 @default.
- W3100757434 cites W2757108520 @default.
- W3100757434 cites W2767891136 @default.
- W3100757434 cites W2785947426 @default.
- W3100757434 cites W2799876761 @default.
- W3100757434 cites W2800926943 @default.
- W3100757434 cites W2806884808 @default.
- W3100757434 cites W2808043011 @default.
- W3100757434 cites W2874062053 @default.
- W3100757434 cites W2890911678 @default.
- W3100757434 cites W2898364362 @default.
- W3100757434 cites W2911675980 @default.
- W3100757434 cites W2938574745 @default.
- W3100757434 cites W2945669687 @default.
- W3100757434 cites W2949301320 @default.
- W3100757434 cites W2951148835 @default.
- W3100757434 cites W2952059807 @default.
- W3100757434 cites W2957436444 @default.
- W3100757434 cites W3005064662 @default.
- W3100757434 cites W3019745511 @default.
- W3100757434 cites W3136918052 @default.
- W3100757434 cites W4232434464 @default.
- W3100757434 doi "https://doi.org/10.1101/2020.11.16.384784" @default.
- W3100757434 hasPublicationYear "2020" @default.
- W3100757434 type Work @default.
- W3100757434 sameAs 3100757434 @default.
- W3100757434 citedByCount "5" @default.
- W3100757434 countsByYear W31007574342021 @default.
- W3100757434 countsByYear W31007574342022 @default.
- W3100757434 crossrefType "posted-content" @default.
- W3100757434 hasAuthorship W3100757434A5009826239 @default.
- W3100757434 hasAuthorship W3100757434A5019584640 @default.
- W3100757434 hasAuthorship W3100757434A5040629308 @default.
- W3100757434 hasAuthorship W3100757434A5045213879 @default.
- W3100757434 hasAuthorship W3100757434A5054469496 @default.
- W3100757434 hasAuthorship W3100757434A5067578751 @default.
- W3100757434 hasAuthorship W3100757434A5076576399 @default.
- W3100757434 hasAuthorship W3100757434A5090587530 @default.
- W3100757434 hasBestOaLocation W31007574341 @default.
- W3100757434 hasConcept C10010492 @default.
- W3100757434 hasConcept C104317684 @default.
- W3100757434 hasConcept C11804247 @default.
- W3100757434 hasConcept C119857082 @default.
- W3100757434 hasConcept C13280743 @default.
- W3100757434 hasConcept C154945302 @default.
- W3100757434 hasConcept C167625842 @default.
- W3100757434 hasConcept C185592680 @default.
- W3100757434 hasConcept C185798385 @default.
- W3100757434 hasConcept C205649164 @default.
- W3100757434 hasConcept C2779281246 @default.
- W3100757434 hasConcept C41008148 @default.
- W3100757434 hasConcept C50644808 @default.
- W3100757434 hasConcept C55493867 @default.
- W3100757434 hasConcept C70721500 @default.
- W3100757434 hasConcept C81363708 @default.
- W3100757434 hasConcept C86803240 @default.
- W3100757434 hasConceptScore W3100757434C10010492 @default.
- W3100757434 hasConceptScore W3100757434C104317684 @default.
- W3100757434 hasConceptScore W3100757434C11804247 @default.
- W3100757434 hasConceptScore W3100757434C119857082 @default.
- W3100757434 hasConceptScore W3100757434C13280743 @default.
- W3100757434 hasConceptScore W3100757434C154945302 @default.
- W3100757434 hasConceptScore W3100757434C167625842 @default.
- W3100757434 hasConceptScore W3100757434C185592680 @default.
- W3100757434 hasConceptScore W3100757434C185798385 @default.
- W3100757434 hasConceptScore W3100757434C205649164 @default.
- W3100757434 hasConceptScore W3100757434C2779281246 @default.
- W3100757434 hasConceptScore W3100757434C41008148 @default.
- W3100757434 hasConceptScore W3100757434C50644808 @default.