Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100761977> ?p ?o ?g. }
- W3100761977 endingPage "109445" @default.
- W3100761977 startingPage "109445" @default.
- W3100761977 abstract "Due to the recent development of deep learning techniques applied to satellite imagery, weather forecasting that uses remote sensing data has also been the subject of major progress. The present paper investigates multiple hours ahead coastal sea elements forecasting in the Netherlands using UNet based architectures. The hourly satellite image data from the Copernicus observation program spanned over a period of two years has been used to train the models and make the forecasting, including seasonal forecasting. Here, we propose 3D dimension Reducer UNet (3DDR-UNet), a variation of the UNet architecture, and further extend this novel model using residual connections, parallel convolutions and asymmetric convolutions which result in introducing three additional architectures, i.e. Res-3DDR-UNet, InceptionRes-3DDR-UNet and AsymmInceptionRes-3DDR-UNet respectively. In particular, we show that the architecture equipped with parallel and asymmetric convolutions as well as skip connections outperforms the other three discussed models." @default.
- W3100761977 created "2020-11-23" @default.
- W3100761977 creator A5009321193 @default.
- W3100761977 creator A5052774187 @default.
- W3100761977 creator A5076867569 @default.
- W3100761977 date "2022-09-01" @default.
- W3100761977 modified "2023-09-25" @default.
- W3100761977 title "Deep coastal sea elements forecasting using UNet-based models" @default.
- W3100761977 cites W1789155650 @default.
- W3100761977 cites W1993512681 @default.
- W3100761977 cites W2001991385 @default.
- W3100761977 cites W2012079387 @default.
- W3100761977 cites W2097117768 @default.
- W3100761977 cites W2172818796 @default.
- W3100761977 cites W2183341477 @default.
- W3100761977 cites W2194775991 @default.
- W3100761977 cites W2333252900 @default.
- W3100761977 cites W2603860472 @default.
- W3100761977 cites W2604790786 @default.
- W3100761977 cites W2766042539 @default.
- W3100761977 cites W2790102940 @default.
- W3100761977 cites W2883723049 @default.
- W3100761977 cites W2900936384 @default.
- W3100761977 cites W2914566663 @default.
- W3100761977 cites W2935316086 @default.
- W3100761977 cites W2943852858 @default.
- W3100761977 cites W2963037989 @default.
- W3100761977 cites W2963351448 @default.
- W3100761977 cites W2963392702 @default.
- W3100761977 cites W2963610939 @default.
- W3100761977 cites W2967059064 @default.
- W3100761977 cites W2985739459 @default.
- W3100761977 cites W3003708426 @default.
- W3100761977 cites W3042493930 @default.
- W3100761977 cites W3096738367 @default.
- W3100761977 cites W3126335003 @default.
- W3100761977 cites W3132280960 @default.
- W3100761977 cites W3133007915 @default.
- W3100761977 cites W3158610431 @default.
- W3100761977 cites W3200052951 @default.
- W3100761977 cites W3207278177 @default.
- W3100761977 cites W4205519976 @default.
- W3100761977 doi "https://doi.org/10.1016/j.knosys.2022.109445" @default.
- W3100761977 hasPublicationYear "2022" @default.
- W3100761977 type Work @default.
- W3100761977 sameAs 3100761977 @default.
- W3100761977 citedByCount "5" @default.
- W3100761977 countsByYear W31007619772021 @default.
- W3100761977 countsByYear W31007619772023 @default.
- W3100761977 crossrefType "journal-article" @default.
- W3100761977 hasAuthorship W3100761977A5009321193 @default.
- W3100761977 hasAuthorship W3100761977A5052774187 @default.
- W3100761977 hasAuthorship W3100761977A5076867569 @default.
- W3100761977 hasBestOaLocation W31007619771 @default.
- W3100761977 hasConcept C108583219 @default.
- W3100761977 hasConcept C11413529 @default.
- W3100761977 hasConcept C121332964 @default.
- W3100761977 hasConcept C127313418 @default.
- W3100761977 hasConcept C127413603 @default.
- W3100761977 hasConcept C146978453 @default.
- W3100761977 hasConcept C153294291 @default.
- W3100761977 hasConcept C154945302 @default.
- W3100761977 hasConcept C155512373 @default.
- W3100761977 hasConcept C19269812 @default.
- W3100761977 hasConcept C202444582 @default.
- W3100761977 hasConcept C33676613 @default.
- W3100761977 hasConcept C33923547 @default.
- W3100761977 hasConcept C41008148 @default.
- W3100761977 hasConcept C62649853 @default.
- W3100761977 hasConceptScore W3100761977C108583219 @default.
- W3100761977 hasConceptScore W3100761977C11413529 @default.
- W3100761977 hasConceptScore W3100761977C121332964 @default.
- W3100761977 hasConceptScore W3100761977C127313418 @default.
- W3100761977 hasConceptScore W3100761977C127413603 @default.
- W3100761977 hasConceptScore W3100761977C146978453 @default.
- W3100761977 hasConceptScore W3100761977C153294291 @default.
- W3100761977 hasConceptScore W3100761977C154945302 @default.
- W3100761977 hasConceptScore W3100761977C155512373 @default.
- W3100761977 hasConceptScore W3100761977C19269812 @default.
- W3100761977 hasConceptScore W3100761977C202444582 @default.
- W3100761977 hasConceptScore W3100761977C33676613 @default.
- W3100761977 hasConceptScore W3100761977C33923547 @default.
- W3100761977 hasConceptScore W3100761977C41008148 @default.
- W3100761977 hasConceptScore W3100761977C62649853 @default.
- W3100761977 hasFunder F4320324232 @default.
- W3100761977 hasLocation W31007619771 @default.
- W3100761977 hasLocation W31007619772 @default.
- W3100761977 hasOpenAccess W3100761977 @default.
- W3100761977 hasPrimaryLocation W31007619771 @default.
- W3100761977 hasRelatedWork W2013329914 @default.
- W3100761977 hasRelatedWork W2731899572 @default.
- W3100761977 hasRelatedWork W2748952813 @default.
- W3100761977 hasRelatedWork W2809282022 @default.
- W3100761977 hasRelatedWork W2939353110 @default.
- W3100761977 hasRelatedWork W3009238340 @default.
- W3100761977 hasRelatedWork W3099850646 @default.
- W3100761977 hasRelatedWork W3215138031 @default.
- W3100761977 hasRelatedWork W4321369474 @default.