Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100763996> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3100763996 abstract "To help prevent motor vehicle accidents, there has been significant interest in finding an automated method to recognize signs of driver distraction, such as talking to passengers, fixing hair and makeup, eating and drinking, and using a mobile phone. In this paper, we present an automated supervised learning method called Drive-Net for driver distraction detection. Drive-Net uses a combination of a convolutional neural network (CNN) and a random decision forest for classifying images of a driver. We compare the performance of our proposed Drive-Net to two other popular machine-learning approaches: a recurrent neural network (RNN), and a multi-layer perceptron (MLP). We test the methods on a publicly available database of images acquired under a controlled environment containing about 22425 images manually annotated by an expert. Results show that Drive-Net achieves a detection accuracy of 95%, which is 2% more than the best results obtained on the same database using other methods." @default.
- W3100763996 created "2020-11-23" @default.
- W3100763996 creator A5038840367 @default.
- W3100763996 creator A5046365008 @default.
- W3100763996 creator A5046974263 @default.
- W3100763996 creator A5068126471 @default.
- W3100763996 date "2018-04-01" @default.
- W3100763996 modified "2023-10-01" @default.
- W3100763996 title "Drive-Net: Convolutional Network for Driver Distraction Detection" @default.
- W3100763996 cites W1934184906 @default.
- W3100763996 cites W1992047056 @default.
- W3100763996 cites W2142376349 @default.
- W3100763996 cites W2183182206 @default.
- W3100763996 cites W2737848625 @default.
- W3100763996 doi "https://doi.org/10.1109/ssiai.2018.8470309" @default.
- W3100763996 hasPublicationYear "2018" @default.
- W3100763996 type Work @default.
- W3100763996 sameAs 3100763996 @default.
- W3100763996 citedByCount "33" @default.
- W3100763996 countsByYear W31007639962019 @default.
- W3100763996 countsByYear W31007639962020 @default.
- W3100763996 countsByYear W31007639962021 @default.
- W3100763996 countsByYear W31007639962022 @default.
- W3100763996 countsByYear W31007639962023 @default.
- W3100763996 crossrefType "proceedings-article" @default.
- W3100763996 hasAuthorship W3100763996A5038840367 @default.
- W3100763996 hasAuthorship W3100763996A5046365008 @default.
- W3100763996 hasAuthorship W3100763996A5046974263 @default.
- W3100763996 hasAuthorship W3100763996A5068126471 @default.
- W3100763996 hasBestOaLocation W31007639962 @default.
- W3100763996 hasConcept C108583219 @default.
- W3100763996 hasConcept C119857082 @default.
- W3100763996 hasConcept C136389625 @default.
- W3100763996 hasConcept C154945302 @default.
- W3100763996 hasConcept C169258074 @default.
- W3100763996 hasConcept C169760540 @default.
- W3100763996 hasConcept C179717631 @default.
- W3100763996 hasConcept C2776378700 @default.
- W3100763996 hasConcept C2776465824 @default.
- W3100763996 hasConcept C41008148 @default.
- W3100763996 hasConcept C50644808 @default.
- W3100763996 hasConcept C81363708 @default.
- W3100763996 hasConcept C86803240 @default.
- W3100763996 hasConceptScore W3100763996C108583219 @default.
- W3100763996 hasConceptScore W3100763996C119857082 @default.
- W3100763996 hasConceptScore W3100763996C136389625 @default.
- W3100763996 hasConceptScore W3100763996C154945302 @default.
- W3100763996 hasConceptScore W3100763996C169258074 @default.
- W3100763996 hasConceptScore W3100763996C169760540 @default.
- W3100763996 hasConceptScore W3100763996C179717631 @default.
- W3100763996 hasConceptScore W3100763996C2776378700 @default.
- W3100763996 hasConceptScore W3100763996C2776465824 @default.
- W3100763996 hasConceptScore W3100763996C41008148 @default.
- W3100763996 hasConceptScore W3100763996C50644808 @default.
- W3100763996 hasConceptScore W3100763996C81363708 @default.
- W3100763996 hasConceptScore W3100763996C86803240 @default.
- W3100763996 hasLocation W31007639961 @default.
- W3100763996 hasLocation W31007639962 @default.
- W3100763996 hasOpenAccess W3100763996 @default.
- W3100763996 hasPrimaryLocation W31007639961 @default.
- W3100763996 hasRelatedWork W2743351574 @default.
- W3100763996 hasRelatedWork W2912407374 @default.
- W3100763996 hasRelatedWork W2968586400 @default.
- W3100763996 hasRelatedWork W3018959556 @default.
- W3100763996 hasRelatedWork W3211546796 @default.
- W3100763996 hasRelatedWork W4220686584 @default.
- W3100763996 hasRelatedWork W4223564025 @default.
- W3100763996 hasRelatedWork W4231994957 @default.
- W3100763996 hasRelatedWork W4246751904 @default.
- W3100763996 hasRelatedWork W4281616679 @default.
- W3100763996 isParatext "false" @default.
- W3100763996 isRetracted "false" @default.
- W3100763996 magId "3100763996" @default.
- W3100763996 workType "article" @default.