Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100771154> ?p ?o ?g. }
- W3100771154 abstract "Design optimization under uncertainty is notoriously difficult when the objective function is expensive to evaluate. State-of-the-art techniques, e.g., stochastic optimization or sampling average approximation, fail to learn exploitable patterns from collected data and, as a result, they tend to require an excessive number of objective function evaluations. There is a need for techniques that alleviate the high cost of information acquisition and select sequential simulations in an optimal way. In the field of deterministic single-objective unconstrained global optimization, the Bayesian global optimization (BGO) approach has been relatively successful in addressing the information acquisition problem. BGO builds a probabilistic surrogate of the expensive objective function and uses it to define an information acquisition function (IAF) whose role is to quantify the merit of making new objective evaluations. Specifically, BGO iterates between making the observations with the largest expected IAF and rebuilding the probabilistic surrogate, until a convergence criterion is met. In this work, we extend the expected improvement (EI) IAF to the case of design optimization under uncertainty. This involves a reformulation of the EI policy that is able to filter out parametric and measurement uncertainties. We by-pass the curse of dimensionality, since the method does not require learning the response surface as a function of the stochastic parameters. To increase the robustness of our approach in the low sample regime, we employ a fully Bayesian interpretation of Gaussian processes by constructing a particle approximation of the posterior of its hyperparameters using adaptive Markov chain Monte Carlo. An addendum of our approach is that it can quantify the epistemic uncertainty on the location of the optimum and the optimal value as induced by the limited number of objective evaluations used in obtaining it. We verify and validate our approach by solving two synthetic optimization problems under uncertainty. We demonstrate our approach by solving a challenging engineering problem: the oil-well-placement problem with uncertainties in the permeability field and the oil price time series." @default.
- W3100771154 created "2020-11-23" @default.
- W3100771154 creator A5025062741 @default.
- W3100771154 creator A5036201536 @default.
- W3100771154 creator A5043072708 @default.
- W3100771154 date "2016-08-21" @default.
- W3100771154 modified "2023-09-28" @default.
- W3100771154 title "Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions" @default.
- W3100771154 cites W114517082 @default.
- W3100771154 cites W1509562192 @default.
- W3100771154 cites W1510052597 @default.
- W3100771154 cites W1538934584 @default.
- W3100771154 cites W1576375403 @default.
- W3100771154 cites W1693986406 @default.
- W3100771154 cites W1707125689 @default.
- W3100771154 cites W1746819321 @default.
- W3100771154 cites W1877740990 @default.
- W3100771154 cites W1969513389 @default.
- W3100771154 cites W1972209418 @default.
- W3100771154 cites W1983139887 @default.
- W3100771154 cites W1983916623 @default.
- W3100771154 cites W1985926778 @default.
- W3100771154 cites W1988447552 @default.
- W3100771154 cites W1991624657 @default.
- W3100771154 cites W2004808074 @default.
- W3100771154 cites W2006681603 @default.
- W3100771154 cites W2020732830 @default.
- W3100771154 cites W2021125631 @default.
- W3100771154 cites W2038669746 @default.
- W3100771154 cites W2040932457 @default.
- W3100771154 cites W2050892063 @default.
- W3100771154 cites W2055689370 @default.
- W3100771154 cites W2060682310 @default.
- W3100771154 cites W2063180182 @default.
- W3100771154 cites W2071544114 @default.
- W3100771154 cites W2072302356 @default.
- W3100771154 cites W2074984119 @default.
- W3100771154 cites W2098432798 @default.
- W3100771154 cites W2106326515 @default.
- W3100771154 cites W2115305054 @default.
- W3100771154 cites W2149252196 @default.
- W3100771154 cites W2151238122 @default.
- W3100771154 cites W2151604161 @default.
- W3100771154 cites W2155927283 @default.
- W3100771154 cites W2166706236 @default.
- W3100771154 cites W2167789032 @default.
- W3100771154 cites W2177636146 @default.
- W3100771154 cites W2610216665 @default.
- W3100771154 cites W2964172739 @default.
- W3100771154 doi "https://doi.org/10.1115/detc2016-60527" @default.
- W3100771154 hasPublicationYear "2016" @default.
- W3100771154 type Work @default.
- W3100771154 sameAs 3100771154 @default.
- W3100771154 citedByCount "6" @default.
- W3100771154 countsByYear W31007711542018 @default.
- W3100771154 countsByYear W31007711542020 @default.
- W3100771154 countsByYear W31007711542021 @default.
- W3100771154 crossrefType "proceedings-article" @default.
- W3100771154 hasAuthorship W3100771154A5025062741 @default.
- W3100771154 hasAuthorship W3100771154A5036201536 @default.
- W3100771154 hasAuthorship W3100771154A5043072708 @default.
- W3100771154 hasBestOaLocation W31007711542 @default.
- W3100771154 hasConcept C104317684 @default.
- W3100771154 hasConcept C105795698 @default.
- W3100771154 hasConcept C11413529 @default.
- W3100771154 hasConcept C117251300 @default.
- W3100771154 hasConcept C119857082 @default.
- W3100771154 hasConcept C121332964 @default.
- W3100771154 hasConcept C126255220 @default.
- W3100771154 hasConcept C137836250 @default.
- W3100771154 hasConcept C154945302 @default.
- W3100771154 hasConcept C163716315 @default.
- W3100771154 hasConcept C185592680 @default.
- W3100771154 hasConcept C194387892 @default.
- W3100771154 hasConcept C2778049539 @default.
- W3100771154 hasConcept C32230216 @default.
- W3100771154 hasConcept C33923547 @default.
- W3100771154 hasConcept C41008148 @default.
- W3100771154 hasConcept C49937458 @default.
- W3100771154 hasConcept C55493867 @default.
- W3100771154 hasConcept C61326573 @default.
- W3100771154 hasConcept C62520636 @default.
- W3100771154 hasConcept C63479239 @default.
- W3100771154 hasConcept C94966114 @default.
- W3100771154 hasConceptScore W3100771154C104317684 @default.
- W3100771154 hasConceptScore W3100771154C105795698 @default.
- W3100771154 hasConceptScore W3100771154C11413529 @default.
- W3100771154 hasConceptScore W3100771154C117251300 @default.
- W3100771154 hasConceptScore W3100771154C119857082 @default.
- W3100771154 hasConceptScore W3100771154C121332964 @default.
- W3100771154 hasConceptScore W3100771154C126255220 @default.
- W3100771154 hasConceptScore W3100771154C137836250 @default.
- W3100771154 hasConceptScore W3100771154C154945302 @default.
- W3100771154 hasConceptScore W3100771154C163716315 @default.
- W3100771154 hasConceptScore W3100771154C185592680 @default.
- W3100771154 hasConceptScore W3100771154C194387892 @default.
- W3100771154 hasConceptScore W3100771154C2778049539 @default.
- W3100771154 hasConceptScore W3100771154C32230216 @default.
- W3100771154 hasConceptScore W3100771154C33923547 @default.
- W3100771154 hasConceptScore W3100771154C41008148 @default.