Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100774525> ?p ?o ?g. }
- W3100774525 endingPage "2223" @default.
- W3100774525 startingPage "2223" @default.
- W3100774525 abstract "Defects introduced during the growth process greatly affect the device performance of two-dimensional (2D) materials. Here we demonstrate the applicability of employing machine-learning-based analysis to distinguish the monolayer continuous film and defect areas of molybdenum disulfide (MoS2) using position-dependent information extracted from its Raman spectra. The random forest method can analyze multiple Raman features to identify samples, making up for the problem of not being able to effectively identify by using just one certain variable with high recognition accuracy. Even some dispersed nucleation site defects can be predicted, which would commonly be ignored under an optical microscope because of the lower optical contrast. The successful application for classification and analysis highlights the potential for implementing machine learning to tap the depth of classical methods in 2D materials research." @default.
- W3100774525 created "2020-11-23" @default.
- W3100774525 creator A5041540951 @default.
- W3100774525 creator A5042241049 @default.
- W3100774525 creator A5048057817 @default.
- W3100774525 creator A5062899508 @default.
- W3100774525 creator A5073216396 @default.
- W3100774525 creator A5076330977 @default.
- W3100774525 creator A5076508243 @default.
- W3100774525 creator A5077599148 @default.
- W3100774525 date "2020-11-09" @default.
- W3100774525 modified "2023-09-26" @default.
- W3100774525 title "Machine Learning Analysis of Raman Spectra of MoS2" @default.
- W3100774525 cites W1543934319 @default.
- W3100774525 cites W1980451122 @default.
- W3100774525 cites W2006054684 @default.
- W3100774525 cites W2007195468 @default.
- W3100774525 cites W2011430131 @default.
- W3100774525 cites W2022964055 @default.
- W3100774525 cites W2037811931 @default.
- W3100774525 cites W2048610167 @default.
- W3100774525 cites W2060009331 @default.
- W3100774525 cites W2075380481 @default.
- W3100774525 cites W2092044679 @default.
- W3100774525 cites W2114311046 @default.
- W3100774525 cites W2136334331 @default.
- W3100774525 cites W2139086914 @default.
- W3100774525 cites W2147143367 @default.
- W3100774525 cites W2150782946 @default.
- W3100774525 cites W2157876253 @default.
- W3100774525 cites W2183989296 @default.
- W3100774525 cites W2310208845 @default.
- W3100774525 cites W2321770094 @default.
- W3100774525 cites W2531562269 @default.
- W3100774525 cites W2568869592 @default.
- W3100774525 cites W2597054437 @default.
- W3100774525 cites W2605487893 @default.
- W3100774525 cites W2786315323 @default.
- W3100774525 cites W2787669806 @default.
- W3100774525 cites W2789867271 @default.
- W3100774525 cites W2885687550 @default.
- W3100774525 cites W2911964244 @default.
- W3100774525 cites W2919284498 @default.
- W3100774525 cites W2921560172 @default.
- W3100774525 cites W2923537029 @default.
- W3100774525 cites W2924142643 @default.
- W3100774525 cites W2943086036 @default.
- W3100774525 cites W2944931029 @default.
- W3100774525 cites W2951596351 @default.
- W3100774525 cites W2952780799 @default.
- W3100774525 cites W2953063515 @default.
- W3100774525 cites W2972634230 @default.
- W3100774525 cites W2978186833 @default.
- W3100774525 cites W2982049401 @default.
- W3100774525 cites W2985766090 @default.
- W3100774525 cites W2986760321 @default.
- W3100774525 cites W2994315603 @default.
- W3100774525 cites W2995033881 @default.
- W3100774525 cites W2997591727 @default.
- W3100774525 cites W3024948968 @default.
- W3100774525 cites W3034093793 @default.
- W3100774525 cites W3098006072 @default.
- W3100774525 cites W3101078128 @default.
- W3100774525 cites W3101929953 @default.
- W3100774525 cites W3103107772 @default.
- W3100774525 cites W3104079565 @default.
- W3100774525 cites W3105764840 @default.
- W3100774525 cites W3105974585 @default.
- W3100774525 cites W4212883601 @default.
- W3100774525 doi "https://doi.org/10.3390/nano10112223" @default.
- W3100774525 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7695331" @default.
- W3100774525 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33182274" @default.
- W3100774525 hasPublicationYear "2020" @default.
- W3100774525 type Work @default.
- W3100774525 sameAs 3100774525 @default.
- W3100774525 citedByCount "9" @default.
- W3100774525 countsByYear W31007745252021 @default.
- W3100774525 countsByYear W31007745252022 @default.
- W3100774525 countsByYear W31007745252023 @default.
- W3100774525 crossrefType "journal-article" @default.
- W3100774525 hasAuthorship W3100774525A5041540951 @default.
- W3100774525 hasAuthorship W3100774525A5042241049 @default.
- W3100774525 hasAuthorship W3100774525A5048057817 @default.
- W3100774525 hasAuthorship W3100774525A5062899508 @default.
- W3100774525 hasAuthorship W3100774525A5073216396 @default.
- W3100774525 hasAuthorship W3100774525A5076330977 @default.
- W3100774525 hasAuthorship W3100774525A5076508243 @default.
- W3100774525 hasAuthorship W3100774525A5077599148 @default.
- W3100774525 hasBestOaLocation W31007745251 @default.
- W3100774525 hasConcept C10138342 @default.
- W3100774525 hasConcept C111919701 @default.
- W3100774525 hasConcept C120665830 @default.
- W3100774525 hasConcept C121332964 @default.
- W3100774525 hasConcept C153180895 @default.
- W3100774525 hasConcept C154945302 @default.
- W3100774525 hasConcept C159985019 @default.
- W3100774525 hasConcept C162324750 @default.
- W3100774525 hasConcept C169258074 @default.