Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100776435> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3100776435 abstract "The adaptive immune system expresses millions of different receptors that detect and fight pathogens encountered throughout life. These receptors are encoded by unique DNA sequences that allow immune cells to express millions of different receptors. High-throughput sequencing and analyses of immune cell receptor sequences present a unique opportunity to inform our understanding of immunological responses to infections and to evaluate vaccine efficacy. Even after the infection is eliminated, pathogen-specific immune cells and their receptor sequences are present at higher frequencies than prior to infection, and their increase in frequency prevents secondary infections. As a result of their persistence in the body, they may be useful for diagnosing infections and evaluating vaccine efficacy as a stable biomarker. However, this process requires thorough analysis of massive datasets at an accuracy beyond traditional statistical tests to diagnose infectious statuses based on sequence analyses. Here we evaluate various machine learning and deep learning algorithms to measure the performance of the identification and diagnosis of specific viral infections or vaccination statuses using the publicly available mouse (monkeypox infection and smallpox vaccination) and human (cytomegalovirus serostatus) T-cell receptor sequenced datasets. Our intensive experiments hold the potential for effective screening of disease status, including recently encountered strains like the ongoing SARS-CoV-2 pandemic." @default.
- W3100776435 created "2020-11-23" @default.
- W3100776435 creator A5008320167 @default.
- W3100776435 creator A5011477031 @default.
- W3100776435 creator A5012328089 @default.
- W3100776435 creator A5022495891 @default.
- W3100776435 creator A5047054370 @default.
- W3100776435 date "2020-09-21" @default.
- W3100776435 modified "2023-09-23" @default.
- W3100776435 title "Performance Evaluation of Viral Infection Diagnosis using T-Cell Receptor Sequence and Artificial Intelligence" @default.
- W3100776435 cites W1506890399 @default.
- W3100776435 cites W1631719479 @default.
- W3100776435 cites W1987971789 @default.
- W3100776435 cites W2004915807 @default.
- W3100776435 cites W2019638830 @default.
- W3100776435 cites W2027407435 @default.
- W3100776435 cites W2027673805 @default.
- W3100776435 cites W2043071551 @default.
- W3100776435 cites W2059785103 @default.
- W3100776435 cites W2089041106 @default.
- W3100776435 cites W2095649738 @default.
- W3100776435 cites W2096428863 @default.
- W3100776435 cites W2108631950 @default.
- W3100776435 cites W2118526609 @default.
- W3100776435 cites W2121555036 @default.
- W3100776435 cites W2131682431 @default.
- W3100776435 cites W2132341951 @default.
- W3100776435 cites W2150340906 @default.
- W3100776435 cites W2156506903 @default.
- W3100776435 cites W2168109746 @default.
- W3100776435 cites W2173617309 @default.
- W3100776435 cites W2338065342 @default.
- W3100776435 cites W2460280360 @default.
- W3100776435 cites W2605177850 @default.
- W3100776435 cites W2728919089 @default.
- W3100776435 cites W2858752521 @default.
- W3100776435 cites W2902657486 @default.
- W3100776435 cites W2980897730 @default.
- W3100776435 cites W2990308980 @default.
- W3100776435 doi "https://doi.org/10.1145/3388440.3412420" @default.
- W3100776435 hasPublicationYear "2020" @default.
- W3100776435 type Work @default.
- W3100776435 sameAs 3100776435 @default.
- W3100776435 citedByCount "0" @default.
- W3100776435 crossrefType "proceedings-article" @default.
- W3100776435 hasAuthorship W3100776435A5008320167 @default.
- W3100776435 hasAuthorship W3100776435A5011477031 @default.
- W3100776435 hasAuthorship W3100776435A5012328089 @default.
- W3100776435 hasAuthorship W3100776435A5022495891 @default.
- W3100776435 hasAuthorship W3100776435A5047054370 @default.
- W3100776435 hasConcept C154945302 @default.
- W3100776435 hasConcept C159047783 @default.
- W3100776435 hasConcept C2778112365 @default.
- W3100776435 hasConcept C41008148 @default.
- W3100776435 hasConcept C54355233 @default.
- W3100776435 hasConcept C70721500 @default.
- W3100776435 hasConcept C86803240 @default.
- W3100776435 hasConceptScore W3100776435C154945302 @default.
- W3100776435 hasConceptScore W3100776435C159047783 @default.
- W3100776435 hasConceptScore W3100776435C2778112365 @default.
- W3100776435 hasConceptScore W3100776435C41008148 @default.
- W3100776435 hasConceptScore W3100776435C54355233 @default.
- W3100776435 hasConceptScore W3100776435C70721500 @default.
- W3100776435 hasConceptScore W3100776435C86803240 @default.
- W3100776435 hasLocation W31007764351 @default.
- W3100776435 hasOpenAccess W3100776435 @default.
- W3100776435 hasPrimaryLocation W31007764351 @default.
- W3100776435 hasRelatedWork W1770217717 @default.
- W3100776435 hasRelatedWork W1992065723 @default.
- W3100776435 hasRelatedWork W2035942032 @default.
- W3100776435 hasRelatedWork W2072660680 @default.
- W3100776435 hasRelatedWork W2076789164 @default.
- W3100776435 hasRelatedWork W2116080616 @default.
- W3100776435 hasRelatedWork W2126866294 @default.
- W3100776435 hasRelatedWork W2130027211 @default.
- W3100776435 hasRelatedWork W2883727091 @default.
- W3100776435 hasRelatedWork W3107474891 @default.
- W3100776435 isParatext "false" @default.
- W3100776435 isRetracted "false" @default.
- W3100776435 magId "3100776435" @default.
- W3100776435 workType "article" @default.