Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100777112> ?p ?o ?g. }
- W3100777112 endingPage "107398" @default.
- W3100777112 startingPage "107398" @default.
- W3100777112 abstract "During the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and electrical motor fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publicly shared in a dedicated website. While there has not been a paper on the review of 1D CNNs and its applications in the literature, this paper fulfills this gap." @default.
- W3100777112 created "2020-11-23" @default.
- W3100777112 creator A5007305559 @default.
- W3100777112 creator A5007583477 @default.
- W3100777112 creator A5047979812 @default.
- W3100777112 creator A5051617175 @default.
- W3100777112 creator A5087538865 @default.
- W3100777112 creator A5090636507 @default.
- W3100777112 date "2021-04-01" @default.
- W3100777112 modified "2023-10-17" @default.
- W3100777112 title "1D convolutional neural networks and applications: A survey" @default.
- W3100777112 cites W1498436455 @default.
- W3100777112 cites W1757333299 @default.
- W3100777112 cites W1849277567 @default.
- W3100777112 cites W1975461060 @default.
- W3100777112 cites W1980287119 @default.
- W3100777112 cites W1995341919 @default.
- W3100777112 cites W1995562189 @default.
- W3100777112 cites W2007200746 @default.
- W3100777112 cites W2010554296 @default.
- W3100777112 cites W2015304908 @default.
- W3100777112 cites W2020144989 @default.
- W3100777112 cites W2024539680 @default.
- W3100777112 cites W2040870580 @default.
- W3100777112 cites W2055646847 @default.
- W3100777112 cites W2066792007 @default.
- W3100777112 cites W2089029279 @default.
- W3100777112 cites W2091987367 @default.
- W3100777112 cites W2099017769 @default.
- W3100777112 cites W2100495367 @default.
- W3100777112 cites W2103212315 @default.
- W3100777112 cites W2108598243 @default.
- W3100777112 cites W2108744642 @default.
- W3100777112 cites W2116360511 @default.
- W3100777112 cites W2117731089 @default.
- W3100777112 cites W2123118998 @default.
- W3100777112 cites W2155273149 @default.
- W3100777112 cites W2158352125 @default.
- W3100777112 cites W2160815625 @default.
- W3100777112 cites W2161742217 @default.
- W3100777112 cites W2162693370 @default.
- W3100777112 cites W2163352848 @default.
- W3100777112 cites W2198724430 @default.
- W3100777112 cites W2223222085 @default.
- W3100777112 cites W2291961022 @default.
- W3100777112 cites W2322787438 @default.
- W3100777112 cites W2404692435 @default.
- W3100777112 cites W2461729787 @default.
- W3100777112 cites W2485614840 @default.
- W3100777112 cites W2515863432 @default.
- W3100777112 cites W2556345765 @default.
- W3100777112 cites W2593479727 @default.
- W3100777112 cites W2595657631 @default.
- W3100777112 cites W2598457882 @default.
- W3100777112 cites W2600563756 @default.
- W3100777112 cites W2623769100 @default.
- W3100777112 cites W2734444710 @default.
- W3100777112 cites W2737404945 @default.
- W3100777112 cites W2741289421 @default.
- W3100777112 cites W2744790985 @default.
- W3100777112 cites W2746230914 @default.
- W3100777112 cites W2748902594 @default.
- W3100777112 cites W2765333890 @default.
- W3100777112 cites W2791965385 @default.
- W3100777112 cites W2795086889 @default.
- W3100777112 cites W2802880321 @default.
- W3100777112 cites W2804879845 @default.
- W3100777112 cites W2810210314 @default.
- W3100777112 cites W2896568470 @default.
- W3100777112 cites W2904906816 @default.
- W3100777112 cites W2949573570 @default.
- W3100777112 cites W2955855129 @default.
- W3100777112 cites W3016123475 @default.
- W3100777112 cites W4242151065 @default.
- W3100777112 doi "https://doi.org/10.1016/j.ymssp.2020.107398" @default.
- W3100777112 hasPublicationYear "2021" @default.
- W3100777112 type Work @default.
- W3100777112 sameAs 3100777112 @default.
- W3100777112 citedByCount "784" @default.
- W3100777112 countsByYear W31007771122020 @default.
- W3100777112 countsByYear W31007771122021 @default.
- W3100777112 countsByYear W31007771122022 @default.
- W3100777112 countsByYear W31007771122023 @default.
- W3100777112 crossrefType "journal-article" @default.
- W3100777112 hasAuthorship W3100777112A5007305559 @default.
- W3100777112 hasAuthorship W3100777112A5007583477 @default.
- W3100777112 hasAuthorship W3100777112A5047979812 @default.
- W3100777112 hasAuthorship W3100777112A5051617175 @default.
- W3100777112 hasAuthorship W3100777112A5087538865 @default.
- W3100777112 hasAuthorship W3100777112A5090636507 @default.
- W3100777112 hasBestOaLocation W31007771121 @default.
- W3100777112 hasConcept C108583219 @default.
- W3100777112 hasConcept C113775141 @default.
- W3100777112 hasConcept C116834253 @default.
- W3100777112 hasConcept C119857082 @default.
- W3100777112 hasConcept C13280743 @default.
- W3100777112 hasConcept C153180895 @default.
- W3100777112 hasConcept C154945302 @default.