Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100779497> ?p ?o ?g. }
- W3100779497 endingPage "19" @default.
- W3100779497 startingPage "1" @default.
- W3100779497 abstract "With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies, and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, big data. Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated learning, and point out the implications and potentials in healthcare." @default.
- W3100779497 created "2020-11-23" @default.
- W3100779497 creator A5030539003 @default.
- W3100779497 creator A5030951014 @default.
- W3100779497 creator A5057917186 @default.
- W3100779497 creator A5075702616 @default.
- W3100779497 creator A5086529957 @default.
- W3100779497 creator A5089118559 @default.
- W3100779497 date "2020-11-12" @default.
- W3100779497 modified "2023-10-17" @default.
- W3100779497 title "Federated Learning for Healthcare Informatics" @default.
- W3100779497 cites W1126991912 @default.
- W3100779497 cites W1557833142 @default.
- W3100779497 cites W1857382374 @default.
- W3100779497 cites W1989164753 @default.
- W3100779497 cites W2004910511 @default.
- W3100779497 cites W2035028841 @default.
- W3100779497 cites W2053637704 @default.
- W3100779497 cites W2167372639 @default.
- W3100779497 cites W2291378922 @default.
- W3100779497 cites W2396881363 @default.
- W3100779497 cites W2473418344 @default.
- W3100779497 cites W2606065148 @default.
- W3100779497 cites W2610332124 @default.
- W3100779497 cites W2746553466 @default.
- W3100779497 cites W2767079719 @default.
- W3100779497 cites W2783522756 @default.
- W3100779497 cites W2797870998 @default.
- W3100779497 cites W2799513350 @default.
- W3100779497 cites W2799605298 @default.
- W3100779497 cites W2891400669 @default.
- W3100779497 cites W2907638403 @default.
- W3100779497 cites W2912213068 @default.
- W3100779497 cites W2917418342 @default.
- W3100779497 cites W2919115771 @default.
- W3100779497 cites W2923546398 @default.
- W3100779497 cites W2954070046 @default.
- W3100779497 cites W2963209930 @default.
- W3100779497 cites W2963333146 @default.
- W3100779497 cites W2968870211 @default.
- W3100779497 cites W2970885630 @default.
- W3100779497 cites W2973051376 @default.
- W3100779497 cites W2977072935 @default.
- W3100779497 cites W2977456252 @default.
- W3100779497 cites W2978422189 @default.
- W3100779497 cites W2981126332 @default.
- W3100779497 cites W2981869278 @default.
- W3100779497 cites W2987985090 @default.
- W3100779497 cites W2989289980 @default.
- W3100779497 cites W2996582092 @default.
- W3100779497 cites W2997545378 @default.
- W3100779497 cites W2998045710 @default.
- W3100779497 cites W3018464563 @default.
- W3100779497 cites W3028537074 @default.
- W3100779497 cites W3048868540 @default.
- W3100779497 cites W3089578458 @default.
- W3100779497 cites W3100779497 @default.
- W3100779497 cites W3118996476 @default.
- W3100779497 doi "https://doi.org/10.1007/s41666-020-00082-4" @default.
- W3100779497 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7659898" @default.
- W3100779497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33204939" @default.
- W3100779497 hasPublicationYear "2020" @default.
- W3100779497 type Work @default.
- W3100779497 sameAs 3100779497 @default.
- W3100779497 citedByCount "408" @default.
- W3100779497 countsByYear W31007794972020 @default.
- W3100779497 countsByYear W31007794972021 @default.
- W3100779497 countsByYear W31007794972022 @default.
- W3100779497 countsByYear W31007794972023 @default.
- W3100779497 crossrefType "journal-article" @default.
- W3100779497 hasAuthorship W3100779497A5030539003 @default.
- W3100779497 hasAuthorship W3100779497A5030951014 @default.
- W3100779497 hasAuthorship W3100779497A5057917186 @default.
- W3100779497 hasAuthorship W3100779497A5075702616 @default.
- W3100779497 hasAuthorship W3100779497A5086529957 @default.
- W3100779497 hasAuthorship W3100779497A5089118559 @default.
- W3100779497 hasBestOaLocation W31007794971 @default.
- W3100779497 hasConcept C108827166 @default.
- W3100779497 hasConcept C111472728 @default.
- W3100779497 hasConcept C119599485 @default.
- W3100779497 hasConcept C124101348 @default.
- W3100779497 hasConcept C127413603 @default.
- W3100779497 hasConcept C138885662 @default.
- W3100779497 hasConcept C145642194 @default.
- W3100779497 hasConcept C160735492 @default.
- W3100779497 hasConcept C17744445 @default.
- W3100779497 hasConcept C191630685 @default.
- W3100779497 hasConcept C199539241 @default.
- W3100779497 hasConcept C2522767166 @default.
- W3100779497 hasConcept C2779530757 @default.
- W3100779497 hasConcept C41008148 @default.
- W3100779497 hasConcept C56739046 @default.
- W3100779497 hasConcept C75684735 @default.
- W3100779497 hasConceptScore W3100779497C108827166 @default.
- W3100779497 hasConceptScore W3100779497C111472728 @default.
- W3100779497 hasConceptScore W3100779497C119599485 @default.
- W3100779497 hasConceptScore W3100779497C124101348 @default.
- W3100779497 hasConceptScore W3100779497C127413603 @default.