Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100792887> ?p ?o ?g. }
- W3100792887 endingPage "e0242013" @default.
- W3100792887 startingPage "e0242013" @default.
- W3100792887 abstract "Background Pneumothorax can lead to a life-threatening emergency. The experienced radiologists can offer precise diagnosis according to the chest radiographs. The localization of the pneumothorax lesions will help to quickly diagnose, which will be benefit for the patients in the underdevelopment areas lack of the experienced radiologists. In recent years, with the development of large neural network architectures and medical imaging datasets, deep learning methods have become a methodology of choice for analyzing medical images. The objective of this study was to the construct convolutional neural networks to localize the pneumothorax lesions in chest radiographs. Methods and findings We developed a convolutional neural network, called CheXLocNet, for the segmentation of pneumothorax lesions. The SIIM-ACR Pneumothorax Segmentation dataset was used to train and validate CheXLocNets. The training dataset contained 2079 radiographs with the annotated lesion areas. We trained six CheXLocNets with various hyperparameters. Another 300 annotated radiographs were used to select parameters of these CheXLocNets as the validation set. We determined the optimal parameters by the AP 50 (average precision at the intersection over union (IoU) equal to 0.50), a segmentation evaluation metric used by several well-known competitions. Then CheXLocNets were evaluated by a test set (1082 normal radiographs and 290 disease radiographs), based on the classification metrics: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV); segmentation metrics: IoU and Dice score. For the classification, CheXLocNet with best sensitivity produced an AUC of 0.87, sensitivity of 0.78 (95% CI 0.73-0.83), and specificity of 0.78 (95% CI 0.76-0.81). CheXLocNet with best specificity produced an AUC of 0.79, sensitivity of 0.46 (95% CI 0.40-0.52), and specificity of 0.92 (95% CI 0.90-0.94). For the segmentation, CheXLocNet with best sensitivity produced an IoU of 0.69 and Dice score of 0.72. CheXLocNet with best specificity produced an IoU of 0.77 and Dice score of 0.79. We combined them to form an ensemble CheXLocNet. The ensemble CheXLocNet produced an IoU of 0.81 and Dice score of 0.82. Our CheXLocNet succeeded in automatically detecting pneumothorax lesions, without any human guidance. Conclusions In this study, we proposed a deep learning network, called, CheXLocNet, for the automatic segmentation of chest radiographs to detect pneumothorax. Our CheXLocNets generated accurate classification results and high-quality segmentation masks for the pneumothorax at the same time. This technology has the potential to improve healthcare delivery and increase access to chest radiograph expertise for the detection of diseases. Furthermore, the segmentation results can offer comprehensive geometric information of lesions, which can benefit monitoring the sequential development of lesions with high accuracy. Thus, CheXLocNets can be further extended to be a reliable clinical decision support tool. Although we used transfer learning in training CheXLocNet, the parameters of CheXLocNet was still large for the radiograph dataset. Further work is necessary to prune CheXLocNet suitable for the radiograph dataset." @default.
- W3100792887 created "2020-11-23" @default.
- W3100792887 creator A5005500248 @default.
- W3100792887 creator A5020231974 @default.
- W3100792887 creator A5067303041 @default.
- W3100792887 creator A5069261004 @default.
- W3100792887 date "2020-11-09" @default.
- W3100792887 modified "2023-10-16" @default.
- W3100792887 title "CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks" @default.
- W3100792887 cites W1861492603 @default.
- W3100792887 cites W1901129140 @default.
- W3100792887 cites W1903029394 @default.
- W3100792887 cites W2019566532 @default.
- W3100792887 cites W2037227137 @default.
- W3100792887 cites W2038509699 @default.
- W3100792887 cites W2089596970 @default.
- W3100792887 cites W2102605133 @default.
- W3100792887 cites W2104543228 @default.
- W3100792887 cites W2146272590 @default.
- W3100792887 cites W2165698076 @default.
- W3100792887 cites W2194775991 @default.
- W3100792887 cites W22040386 @default.
- W3100792887 cites W2221898772 @default.
- W3100792887 cites W2517954747 @default.
- W3100792887 cites W2565639579 @default.
- W3100792887 cites W2608231518 @default.
- W3100792887 cites W2885112059 @default.
- W3100792887 cites W2901030517 @default.
- W3100792887 cites W2901794879 @default.
- W3100792887 cites W2901954625 @default.
- W3100792887 cites W2911823761 @default.
- W3100792887 cites W2915632263 @default.
- W3100792887 cites W2919115771 @default.
- W3100792887 cites W2963150697 @default.
- W3100792887 cites W2963942157 @default.
- W3100792887 cites W2982071196 @default.
- W3100792887 cites W2996290406 @default.
- W3100792887 cites W2997638939 @default.
- W3100792887 cites W3045625006 @default.
- W3100792887 cites W3101156210 @default.
- W3100792887 cites W4249736682 @default.
- W3100792887 doi "https://doi.org/10.1371/journal.pone.0242013" @default.
- W3100792887 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7652331" @default.
- W3100792887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33166371" @default.
- W3100792887 hasPublicationYear "2020" @default.
- W3100792887 type Work @default.
- W3100792887 sameAs 3100792887 @default.
- W3100792887 citedByCount "18" @default.
- W3100792887 countsByYear W31007928872021 @default.
- W3100792887 countsByYear W31007928872022 @default.
- W3100792887 countsByYear W31007928872023 @default.
- W3100792887 crossrefType "journal-article" @default.
- W3100792887 hasAuthorship W3100792887A5005500248 @default.
- W3100792887 hasAuthorship W3100792887A5020231974 @default.
- W3100792887 hasAuthorship W3100792887A5067303041 @default.
- W3100792887 hasAuthorship W3100792887A5069261004 @default.
- W3100792887 hasBestOaLocation W31007928871 @default.
- W3100792887 hasConcept C108583219 @default.
- W3100792887 hasConcept C126322002 @default.
- W3100792887 hasConcept C126838900 @default.
- W3100792887 hasConcept C153180895 @default.
- W3100792887 hasConcept C154945302 @default.
- W3100792887 hasConcept C169903167 @default.
- W3100792887 hasConcept C2778329176 @default.
- W3100792887 hasConcept C36454342 @default.
- W3100792887 hasConcept C41008148 @default.
- W3100792887 hasConcept C58471807 @default.
- W3100792887 hasConcept C71924100 @default.
- W3100792887 hasConcept C81363708 @default.
- W3100792887 hasConcept C89600930 @default.
- W3100792887 hasConceptScore W3100792887C108583219 @default.
- W3100792887 hasConceptScore W3100792887C126322002 @default.
- W3100792887 hasConceptScore W3100792887C126838900 @default.
- W3100792887 hasConceptScore W3100792887C153180895 @default.
- W3100792887 hasConceptScore W3100792887C154945302 @default.
- W3100792887 hasConceptScore W3100792887C169903167 @default.
- W3100792887 hasConceptScore W3100792887C2778329176 @default.
- W3100792887 hasConceptScore W3100792887C36454342 @default.
- W3100792887 hasConceptScore W3100792887C41008148 @default.
- W3100792887 hasConceptScore W3100792887C58471807 @default.
- W3100792887 hasConceptScore W3100792887C71924100 @default.
- W3100792887 hasConceptScore W3100792887C81363708 @default.
- W3100792887 hasConceptScore W3100792887C89600930 @default.
- W3100792887 hasFunder F4320321001 @default.
- W3100792887 hasIssue "11" @default.
- W3100792887 hasLocation W31007928871 @default.
- W3100792887 hasLocation W31007928872 @default.
- W3100792887 hasLocation W31007928873 @default.
- W3100792887 hasOpenAccess W3100792887 @default.
- W3100792887 hasPrimaryLocation W31007928871 @default.
- W3100792887 hasRelatedWork W2738221750 @default.
- W3100792887 hasRelatedWork W2971526870 @default.
- W3100792887 hasRelatedWork W2994948129 @default.
- W3100792887 hasRelatedWork W3095523211 @default.
- W3100792887 hasRelatedWork W3102253946 @default.
- W3100792887 hasRelatedWork W3144574764 @default.
- W3100792887 hasRelatedWork W3156786002 @default.
- W3100792887 hasRelatedWork W3166467183 @default.