Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100801650> ?p ?o ?g. }
- W3100801650 endingPage "7925" @default.
- W3100801650 startingPage "7915" @default.
- W3100801650 abstract "The accurate sampling of protein dynamics is an ongoing challenge despite the utilization of high-performance computer (HPC) systems. Utilizing only brute force molecular dynamics (MD) simulations requires an unacceptably long time to solution. Adaptive sampling methods allow a more effective sampling of protein dynamics than standard MD simulations. Depending on the restarting strategy, the speed up can be more than 1 order of magnitude. One challenge limiting the utilization of adaptive sampling by domain experts is the relatively high complexity of efficiently running adaptive sampling on HPC systems. We discuss how the ExTASY framework can set up new adaptive sampling strategies and reliably execute resulting workflows at scale on HPC platforms. Here, the folding dynamics of four proteins are predicted with no a priori information." @default.
- W3100801650 created "2020-11-23" @default.
- W3100801650 creator A5007436273 @default.
- W3100801650 creator A5010460625 @default.
- W3100801650 creator A5028838499 @default.
- W3100801650 creator A5038763846 @default.
- W3100801650 creator A5061903235 @default.
- W3100801650 date "2020-11-10" @default.
- W3100801650 modified "2023-10-17" @default.
- W3100801650 title "Extensible and Scalable Adaptive Sampling on Supercomputers" @default.
- W3100801650 cites W1898130445 @default.
- W3100801650 cites W1971725855 @default.
- W3100801650 cites W1989544083 @default.
- W3100801650 cites W1997054581 @default.
- W3100801650 cites W1998239582 @default.
- W3100801650 cites W2006554089 @default.
- W3100801650 cites W2011242225 @default.
- W3100801650 cites W2016336300 @default.
- W3100801650 cites W2022239151 @default.
- W3100801650 cites W2025899185 @default.
- W3100801650 cites W2027109368 @default.
- W3100801650 cites W2027593773 @default.
- W3100801650 cites W2046290306 @default.
- W3100801650 cites W2049489032 @default.
- W3100801650 cites W2060757799 @default.
- W3100801650 cites W2063021109 @default.
- W3100801650 cites W2067236515 @default.
- W3100801650 cites W2068540815 @default.
- W3100801650 cites W2069620421 @default.
- W3100801650 cites W2085213650 @default.
- W3100801650 cites W2211106937 @default.
- W3100801650 cites W2226825552 @default.
- W3100801650 cites W2249325510 @default.
- W3100801650 cites W2296686360 @default.
- W3100801650 cites W2315297180 @default.
- W3100801650 cites W2317766861 @default.
- W3100801650 cites W2322812643 @default.
- W3100801650 cites W2330733193 @default.
- W3100801650 cites W2395962256 @default.
- W3100801650 cites W2399447404 @default.
- W3100801650 cites W2417954325 @default.
- W3100801650 cites W2528583500 @default.
- W3100801650 cites W2554489021 @default.
- W3100801650 cites W2577671591 @default.
- W3100801650 cites W2586455802 @default.
- W3100801650 cites W2591704465 @default.
- W3100801650 cites W2623055862 @default.
- W3100801650 cites W2730644873 @default.
- W3100801650 cites W2743816750 @default.
- W3100801650 cites W2759853974 @default.
- W3100801650 cites W2765861397 @default.
- W3100801650 cites W2783073729 @default.
- W3100801650 cites W2784967119 @default.
- W3100801650 cites W2795981386 @default.
- W3100801650 cites W2796177908 @default.
- W3100801650 cites W2802988980 @default.
- W3100801650 cites W2863051953 @default.
- W3100801650 cites W2906950859 @default.
- W3100801650 cites W2909282192 @default.
- W3100801650 cites W2949221896 @default.
- W3100801650 cites W2949223833 @default.
- W3100801650 cites W2954046734 @default.
- W3100801650 cites W2963104418 @default.
- W3100801650 cites W2963383782 @default.
- W3100801650 cites W2963550297 @default.
- W3100801650 cites W2963919096 @default.
- W3100801650 cites W2964129632 @default.
- W3100801650 cites W2964149432 @default.
- W3100801650 cites W2964210303 @default.
- W3100801650 cites W2969072345 @default.
- W3100801650 cites W2997905860 @default.
- W3100801650 cites W2998852726 @default.
- W3100801650 cites W3098098342 @default.
- W3100801650 cites W3099423575 @default.
- W3100801650 cites W3099674394 @default.
- W3100801650 cites W3100810942 @default.
- W3100801650 cites W585413800 @default.
- W3100801650 doi "https://doi.org/10.1021/acs.jctc.0c00991" @default.
- W3100801650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33170696" @default.
- W3100801650 hasPublicationYear "2020" @default.
- W3100801650 type Work @default.
- W3100801650 sameAs 3100801650 @default.
- W3100801650 citedByCount "15" @default.
- W3100801650 countsByYear W31008016502020 @default.
- W3100801650 countsByYear W31008016502021 @default.
- W3100801650 countsByYear W31008016502022 @default.
- W3100801650 countsByYear W31008016502023 @default.
- W3100801650 crossrefType "journal-article" @default.
- W3100801650 hasAuthorship W3100801650A5007436273 @default.
- W3100801650 hasAuthorship W3100801650A5010460625 @default.
- W3100801650 hasAuthorship W3100801650A5028838499 @default.
- W3100801650 hasAuthorship W3100801650A5038763846 @default.
- W3100801650 hasAuthorship W3100801650A5061903235 @default.
- W3100801650 hasBestOaLocation W31008016502 @default.
- W3100801650 hasConcept C105795698 @default.
- W3100801650 hasConcept C111919701 @default.
- W3100801650 hasConcept C118524514 @default.
- W3100801650 hasConcept C120314980 @default.