Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100805595> ?p ?o ?g. }
- W3100805595 endingPage "208169" @default.
- W3100805595 startingPage "208158" @default.
- W3100805595 abstract "Given the enormous traffic issues, such as congestion and crashes, resulting from the conflicts between trucks and passenger cars, an accurate and reliable prediction of truck traffic flow is needed to enhance the traffic flow efficiency and safety in the mixed traffic condition. Enabled by emerging sensing technologies, the GPS data become available and will reveal some insights to improve the understanding of truck traffic flow prediction. In the paper, a novel method of truck traffic flow prediction is proposed by using sampled GPS data in the roadway network. The proposed method consists of two phases, which are expansion and prediction. In the data expansion phase, a piece-wise constant coefficient method is designed to minimize errors between the sampled truck flow and the actual truck flow, where the coefficients are determined according to road grades and traffic flow size. In the prediction phase, Long Short Term Memory (LSTM) and Gated Recursive Unit (GRU) neural network methods are first time employed to improve the prediction accuracy. Considering that the sequence of the expansion and prediction could have different prediction performance, approaches using both `previous-prediction', `post-expansion' and `previous-expansion', `post-prediction' were used and the results compared with the survey data from traffic flows. The results demonstrate that LSTM and GRU have a superior performance compared to existing approaches using SRV and ARIMA for truck traffic flow prediction. For the whole prediction period, LSTM has better prediction results than GRU overall with an accuracy which is 4.10% better than that of GRU. Furthermore, the accuracy of the `previous-prediction', `post-expansion' is 8.26% greater than that of the `previous-expansion', `post-prediction'." @default.
- W3100805595 created "2020-11-23" @default.
- W3100805595 creator A5002668898 @default.
- W3100805595 creator A5015918478 @default.
- W3100805595 creator A5039071926 @default.
- W3100805595 creator A5067006288 @default.
- W3100805595 creator A5081982909 @default.
- W3100805595 date "2020-01-01" @default.
- W3100805595 modified "2023-10-13" @default.
- W3100805595 title "Truck Traffic Flow Prediction Based on LSTM and GRU Methods With Sampled GPS Data" @default.
- W3100805595 cites W1973943669 @default.
- W3100805595 cites W2019191255 @default.
- W3100805595 cites W2031069824 @default.
- W3100805595 cites W2039571647 @default.
- W3100805595 cites W2040297119 @default.
- W3100805595 cites W2049323425 @default.
- W3100805595 cites W2049952439 @default.
- W3100805595 cites W2064508781 @default.
- W3100805595 cites W2084893173 @default.
- W3100805595 cites W2090192376 @default.
- W3100805595 cites W2123340061 @default.
- W3100805595 cites W2132711183 @default.
- W3100805595 cites W2157331557 @default.
- W3100805595 cites W2171234954 @default.
- W3100805595 cites W2261144659 @default.
- W3100805595 cites W2281972242 @default.
- W3100805595 cites W2572939427 @default.
- W3100805595 cites W2573587735 @default.
- W3100805595 cites W2787897980 @default.
- W3100805595 cites W2793789770 @default.
- W3100805595 cites W2808956223 @default.
- W3100805595 cites W2900682747 @default.
- W3100805595 cites W2901504064 @default.
- W3100805595 cites W2903809262 @default.
- W3100805595 cites W2904042868 @default.
- W3100805595 cites W2907874667 @default.
- W3100805595 cites W2910982572 @default.
- W3100805595 cites W2916752133 @default.
- W3100805595 cites W2921685418 @default.
- W3100805595 cites W2927719797 @default.
- W3100805595 cites W2929436693 @default.
- W3100805595 cites W2949685089 @default.
- W3100805595 cites W2955819484 @default.
- W3100805595 cites W2965092899 @default.
- W3100805595 cites W2976223896 @default.
- W3100805595 cites W594114979 @default.
- W3100805595 doi "https://doi.org/10.1109/access.2020.3038788" @default.
- W3100805595 hasPublicationYear "2020" @default.
- W3100805595 type Work @default.
- W3100805595 sameAs 3100805595 @default.
- W3100805595 citedByCount "40" @default.
- W3100805595 countsByYear W31008055952021 @default.
- W3100805595 countsByYear W31008055952022 @default.
- W3100805595 countsByYear W31008055952023 @default.
- W3100805595 crossrefType "journal-article" @default.
- W3100805595 hasAuthorship W3100805595A5002668898 @default.
- W3100805595 hasAuthorship W3100805595A5015918478 @default.
- W3100805595 hasAuthorship W3100805595A5039071926 @default.
- W3100805595 hasAuthorship W3100805595A5067006288 @default.
- W3100805595 hasAuthorship W3100805595A5081982909 @default.
- W3100805595 hasBestOaLocation W31008055951 @default.
- W3100805595 hasConcept C119857082 @default.
- W3100805595 hasConcept C124101348 @default.
- W3100805595 hasConcept C127413603 @default.
- W3100805595 hasConcept C151406439 @default.
- W3100805595 hasConcept C154945302 @default.
- W3100805595 hasConcept C171146098 @default.
- W3100805595 hasConcept C207512268 @default.
- W3100805595 hasConcept C24338571 @default.
- W3100805595 hasConcept C2524010 @default.
- W3100805595 hasConcept C31258907 @default.
- W3100805595 hasConcept C33923547 @default.
- W3100805595 hasConcept C38349280 @default.
- W3100805595 hasConcept C41008148 @default.
- W3100805595 hasConcept C50644808 @default.
- W3100805595 hasConcept C52121051 @default.
- W3100805595 hasConcept C60229501 @default.
- W3100805595 hasConcept C76155785 @default.
- W3100805595 hasConcept C79403827 @default.
- W3100805595 hasConceptScore W3100805595C119857082 @default.
- W3100805595 hasConceptScore W3100805595C124101348 @default.
- W3100805595 hasConceptScore W3100805595C127413603 @default.
- W3100805595 hasConceptScore W3100805595C151406439 @default.
- W3100805595 hasConceptScore W3100805595C154945302 @default.
- W3100805595 hasConceptScore W3100805595C171146098 @default.
- W3100805595 hasConceptScore W3100805595C207512268 @default.
- W3100805595 hasConceptScore W3100805595C24338571 @default.
- W3100805595 hasConceptScore W3100805595C2524010 @default.
- W3100805595 hasConceptScore W3100805595C31258907 @default.
- W3100805595 hasConceptScore W3100805595C33923547 @default.
- W3100805595 hasConceptScore W3100805595C38349280 @default.
- W3100805595 hasConceptScore W3100805595C41008148 @default.
- W3100805595 hasConceptScore W3100805595C50644808 @default.
- W3100805595 hasConceptScore W3100805595C52121051 @default.
- W3100805595 hasConceptScore W3100805595C60229501 @default.
- W3100805595 hasConceptScore W3100805595C76155785 @default.
- W3100805595 hasConceptScore W3100805595C79403827 @default.
- W3100805595 hasFunder F4320321001 @default.