Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100806690> ?p ?o ?g. }
- W3100806690 abstract "Aims. Hydrocarbons are ubiquitous in the interstellar medium, but their formation is still not well understood, depending on the physical environment in which they are found. Messier 8 (M8) is host to one of the brightest H II regions and photodissociation regions (PDRs) in our galaxy. With the observed C 2 H and c-C 3 H 2 data toward M8, we aim at obtaining their densities and abundances and to shed some light on their formation mechanism. Methods. Using the Atacama Pathfinder Experiment (APEX) 12 m, and the Institut de Radioastronomie Millimétrique (IRAM) 30 m telescopes, we performed a line survey toward Herschel 36 (Her 36), which is the main ionizing stellar system in M8, and an imaging survey within 1.3 × 1.3 pc around Her 36 of various transitions of C 2 H and c-C 3 H 2 . We used both local thermodynamic equilibrium (LTE) and non-LTE methods to determine the physical conditions of the emitting gas along with the column densities and abundances of the observed species, which we compared with (updated) gas-phase photochemical PDR models. In order to examine the role of polycyclic aromatic hydrocarbons (PAHs) in the formation of small hydrocarbons and to investigate their association with the H II region, the PDR and the molecular cloud, we compared archival Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) 8 μ m and the Spectral and Photometric Imaging Receiver (SPIRE) 250 μ m continuum images with the C 2 H emission maps. Results. We observed a total of three rotational transitions of C 2 H with their hyperfine structure components and four rotational transitions of c-C 3 H 2 with ortho and para symmetries toward the H II region and the PDR of M8. Fragmentation of PAHs seems less likely to contribute to the formation of small hydrocarbons as the 8 μ m emission does not follow the distribution of C 2 H emission, which is more associated with the molecular cloud toward the north west of Her 36. From the quantitative analysis, we obtained abundances of ~10 −8 and 10 −9 for C 2 H and c-C 3 H 2 respectively, and volume densities of the hydrocarbon emitting gas in the range n (H 2 ) ~5 × 10 4 –5 × 10 6 cm −3 . Conclusions. The observed column densities of C 2 H and c-C 3 H 2 are reproduced reasonably well by our PDR models. This supports the idea that in high-UV flux PDRs, gas-phase chemistry is sufficient to explain hydrocarbon abundances." @default.
- W3100806690 created "2020-11-23" @default.
- W3100806690 creator A5013615316 @default.
- W3100806690 creator A5033033533 @default.
- W3100806690 creator A5044212638 @default.
- W3100806690 creator A5069914511 @default.
- W3100806690 creator A5071810615 @default.
- W3100806690 creator A5083465619 @default.
- W3100806690 date "2019-06-01" @default.
- W3100806690 modified "2023-10-17" @default.
- W3100806690 title "Observational study of hydrocarbons in the bright photodissociation region of Messier 8" @default.
- W3100806690 cites W1933340382 @default.
- W3100806690 cites W1967216064 @default.
- W3100806690 cites W1974601442 @default.
- W3100806690 cites W1975481745 @default.
- W3100806690 cites W1977084285 @default.
- W3100806690 cites W1982360601 @default.
- W3100806690 cites W1982511713 @default.
- W3100806690 cites W1988977509 @default.
- W3100806690 cites W2005140510 @default.
- W3100806690 cites W2009534730 @default.
- W3100806690 cites W2015659973 @default.
- W3100806690 cites W2042055749 @default.
- W3100806690 cites W2044239521 @default.
- W3100806690 cites W2045056716 @default.
- W3100806690 cites W2047012904 @default.
- W3100806690 cites W2056136404 @default.
- W3100806690 cites W2064422181 @default.
- W3100806690 cites W2072125203 @default.
- W3100806690 cites W2074365138 @default.
- W3100806690 cites W2078001023 @default.
- W3100806690 cites W2085783819 @default.
- W3100806690 cites W2093972938 @default.
- W3100806690 cites W2101076973 @default.
- W3100806690 cites W2101219127 @default.
- W3100806690 cites W2101588439 @default.
- W3100806690 cites W2109104933 @default.
- W3100806690 cites W2115022808 @default.
- W3100806690 cites W2117536939 @default.
- W3100806690 cites W2118046322 @default.
- W3100806690 cites W2128294460 @default.
- W3100806690 cites W2131287406 @default.
- W3100806690 cites W2132762521 @default.
- W3100806690 cites W2133856662 @default.
- W3100806690 cites W2135536375 @default.
- W3100806690 cites W2171942739 @default.
- W3100806690 cites W2171949060 @default.
- W3100806690 cites W2275322287 @default.
- W3100806690 cites W2768257411 @default.
- W3100806690 cites W2951074621 @default.
- W3100806690 cites W3099402975 @default.
- W3100806690 cites W3101532017 @default.
- W3100806690 cites W3101736992 @default.
- W3100806690 cites W3102338385 @default.
- W3100806690 cites W3104920122 @default.
- W3100806690 cites W3106393370 @default.
- W3100806690 cites W3126078291 @default.
- W3100806690 cites W4290035629 @default.
- W3100806690 cites W4293003757 @default.
- W3100806690 cites W4293256910 @default.
- W3100806690 cites W4294328539 @default.
- W3100806690 doi "https://doi.org/10.1051/0004-6361/201834567" @default.
- W3100806690 hasPublicationYear "2019" @default.
- W3100806690 type Work @default.
- W3100806690 sameAs 3100806690 @default.
- W3100806690 citedByCount "7" @default.
- W3100806690 countsByYear W31008066902020 @default.
- W3100806690 countsByYear W31008066902021 @default.
- W3100806690 crossrefType "journal-article" @default.
- W3100806690 hasAuthorship W3100806690A5013615316 @default.
- W3100806690 hasAuthorship W3100806690A5033033533 @default.
- W3100806690 hasAuthorship W3100806690A5044212638 @default.
- W3100806690 hasAuthorship W3100806690A5069914511 @default.
- W3100806690 hasAuthorship W3100806690A5071810615 @default.
- W3100806690 hasAuthorship W3100806690A5083465619 @default.
- W3100806690 hasBestOaLocation W31008066901 @default.
- W3100806690 hasConcept C121332964 @default.
- W3100806690 hasConcept C125857072 @default.
- W3100806690 hasConcept C1276947 @default.
- W3100806690 hasConcept C145148216 @default.
- W3100806690 hasConcept C150846664 @default.
- W3100806690 hasConcept C158355884 @default.
- W3100806690 hasConcept C158749347 @default.
- W3100806690 hasConcept C180920033 @default.
- W3100806690 hasConcept C185592680 @default.
- W3100806690 hasConcept C196939603 @default.
- W3100806690 hasConcept C198291218 @default.
- W3100806690 hasConcept C2777158746 @default.
- W3100806690 hasConcept C44870925 @default.
- W3100806690 hasConcept C54582936 @default.
- W3100806690 hasConcept C62520636 @default.
- W3100806690 hasConcept C75473681 @default.
- W3100806690 hasConcept C86021447 @default.
- W3100806690 hasConcept C98444146 @default.
- W3100806690 hasConceptScore W3100806690C121332964 @default.
- W3100806690 hasConceptScore W3100806690C125857072 @default.
- W3100806690 hasConceptScore W3100806690C1276947 @default.
- W3100806690 hasConceptScore W3100806690C145148216 @default.
- W3100806690 hasConceptScore W3100806690C150846664 @default.
- W3100806690 hasConceptScore W3100806690C158355884 @default.