Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100807582> ?p ?o ?g. }
- W3100807582 endingPage "800" @default.
- W3100807582 startingPage "763" @default.
- W3100807582 abstract "Estimating the number $n$ of unseen species from a $k-$sample displaying only $pleq k$ distinct sampled species has received attention for long. It requires a model of species abundance together with a sampling model. We start with a discrete model of iid stochastic species abundances, each with Gibbs-Poisson distribution. A $k-$sample drawn from the $n-$species abundances vector is the one obtained while conditioning it on summing to $k$% . We discuss the sampling formulae (species occupancy distributions, frequency of frequencies) in this context. We then develop some aspects of the estimation of $n$ problem from the size $k$ of the sample and the observed value of $P_{n,k}$, the number of distinct sampled species. It is shown that it always makes sense to study these occupancy problems from a Gibbs-Poisson abundance model in the context of a population with infinitely many species. From this extension, a parameter $gamma $ naturally appears, which is a measure of richness or diversity of species. We rederive the sampling formulae for a population with infinitely many species, together with the distribution of the number $P_{k}$ of distinct sampled species. We investigate the estimation of $gamma $ problem from the sample size $k$ and the observed value of $P_{k}$. We then exhibit a large special class of Gibbs-Poisson distributions having the property that sampling from a discrete abundance model may equivalently be viewed as a sampling problem from a random partition of unity, now in the continuum. When $n$ is finite, this partition may be built upon normalizing $% n$ infinitely divisible iid positive random variables by its partial sum. It is shown that the sampling process in the continuum should generically be biased on the total length appearing in the latter normalization. A construction with size-biased sampling from the ranked normalized jumps of a subordinator is also supplied, would the problem under study present infinitely many species. We illustrate our point of view with many examples, some of which being new ones." @default.
- W3100807582 created "2020-11-23" @default.
- W3100807582 creator A5017663758 @default.
- W3100807582 creator A5080438116 @default.
- W3100807582 date "2013-10-16" @default.
- W3100807582 modified "2023-09-25" @default.
- W3100807582 title "Occupancy Distributions Arising in Sampling from Gibbs-Poisson Abundance Models" @default.
- W3100807582 cites W102386743 @default.
- W3100807582 cites W179694669 @default.
- W3100807582 cites W191562458 @default.
- W3100807582 cites W1967318355 @default.
- W3100807582 cites W1973368148 @default.
- W3100807582 cites W1984020803 @default.
- W3100807582 cites W1986234631 @default.
- W3100807582 cites W1999942773 @default.
- W3100807582 cites W2000650629 @default.
- W3100807582 cites W2016564360 @default.
- W3100807582 cites W2025540102 @default.
- W3100807582 cites W2032793159 @default.
- W3100807582 cites W2053218206 @default.
- W3100807582 cites W2062826172 @default.
- W3100807582 cites W2065656093 @default.
- W3100807582 cites W2076334313 @default.
- W3100807582 cites W2087309226 @default.
- W3100807582 cites W2088982000 @default.
- W3100807582 cites W2089484716 @default.
- W3100807582 cites W2091531860 @default.
- W3100807582 cites W2092718577 @default.
- W3100807582 cites W2102336486 @default.
- W3100807582 cites W2135068094 @default.
- W3100807582 cites W2142808179 @default.
- W3100807582 cites W2146368895 @default.
- W3100807582 cites W2189565700 @default.
- W3100807582 cites W2314031046 @default.
- W3100807582 cites W2324388691 @default.
- W3100807582 cites W2330907628 @default.
- W3100807582 cites W2503211312 @default.
- W3100807582 cites W2965515163 @default.
- W3100807582 cites W4211083695 @default.
- W3100807582 cites W4297935012 @default.
- W3100807582 doi "https://doi.org/10.1007/s10955-013-0865-y" @default.
- W3100807582 hasPublicationYear "2013" @default.
- W3100807582 type Work @default.
- W3100807582 sameAs 3100807582 @default.
- W3100807582 citedByCount "0" @default.
- W3100807582 crossrefType "journal-article" @default.
- W3100807582 hasAuthorship W3100807582A5017663758 @default.
- W3100807582 hasAuthorship W3100807582A5080438116 @default.
- W3100807582 hasBestOaLocation W31008075822 @default.
- W3100807582 hasConcept C100906024 @default.
- W3100807582 hasConcept C105795698 @default.
- W3100807582 hasConcept C107673813 @default.
- W3100807582 hasConcept C120665830 @default.
- W3100807582 hasConcept C121332964 @default.
- W3100807582 hasConcept C121864883 @default.
- W3100807582 hasConcept C140779682 @default.
- W3100807582 hasConcept C144024400 @default.
- W3100807582 hasConcept C149923435 @default.
- W3100807582 hasConcept C151730666 @default.
- W3100807582 hasConcept C158424031 @default.
- W3100807582 hasConcept C160331591 @default.
- W3100807582 hasConcept C170593435 @default.
- W3100807582 hasConcept C18903297 @default.
- W3100807582 hasConcept C19499675 @default.
- W3100807582 hasConcept C2779343474 @default.
- W3100807582 hasConcept C28826006 @default.
- W3100807582 hasConcept C2908647359 @default.
- W3100807582 hasConcept C33923547 @default.
- W3100807582 hasConcept C52740198 @default.
- W3100807582 hasConcept C77077793 @default.
- W3100807582 hasConcept C82152865 @default.
- W3100807582 hasConcept C86803240 @default.
- W3100807582 hasConcept C94915269 @default.
- W3100807582 hasConceptScore W3100807582C100906024 @default.
- W3100807582 hasConceptScore W3100807582C105795698 @default.
- W3100807582 hasConceptScore W3100807582C107673813 @default.
- W3100807582 hasConceptScore W3100807582C120665830 @default.
- W3100807582 hasConceptScore W3100807582C121332964 @default.
- W3100807582 hasConceptScore W3100807582C121864883 @default.
- W3100807582 hasConceptScore W3100807582C140779682 @default.
- W3100807582 hasConceptScore W3100807582C144024400 @default.
- W3100807582 hasConceptScore W3100807582C149923435 @default.
- W3100807582 hasConceptScore W3100807582C151730666 @default.
- W3100807582 hasConceptScore W3100807582C158424031 @default.
- W3100807582 hasConceptScore W3100807582C160331591 @default.
- W3100807582 hasConceptScore W3100807582C170593435 @default.
- W3100807582 hasConceptScore W3100807582C18903297 @default.
- W3100807582 hasConceptScore W3100807582C19499675 @default.
- W3100807582 hasConceptScore W3100807582C2779343474 @default.
- W3100807582 hasConceptScore W3100807582C28826006 @default.
- W3100807582 hasConceptScore W3100807582C2908647359 @default.
- W3100807582 hasConceptScore W3100807582C33923547 @default.
- W3100807582 hasConceptScore W3100807582C52740198 @default.
- W3100807582 hasConceptScore W3100807582C77077793 @default.
- W3100807582 hasConceptScore W3100807582C82152865 @default.
- W3100807582 hasConceptScore W3100807582C86803240 @default.
- W3100807582 hasConceptScore W3100807582C94915269 @default.
- W3100807582 hasIssue "5" @default.