Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100815891> ?p ?o ?g. }
- W3100815891 endingPage "13" @default.
- W3100815891 startingPage "1" @default.
- W3100815891 abstract "Autonomous structural health monitoring (SHM) of a large number of bridges became a topic of paramount importance for maintenance purposes and safety reasons. This article proposes a set of machine learning (ML) tools to perform automatic detection of anomalies in a bridge structure from vibrational data. As a case study, we considered the Z-24 bridge for which an extensive database of accelerometric data is available. The proposed framework starts from the stabilization diagram obtained through operational modal analysis (OMA) to perform the clustering of modal frequencies and their tracking by density-based time-domain filtering. The features extracted are then fed to a one-class classification (OCC) algorithm to perform anomaly detection. In particular, we propose two new anomaly detectors, namely, one-class classifier neural network (OCCNN) and OCCNN <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> , that find the normal class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimate. The detection algorithms are then compared with known methods based on the principal component analysis (PCA), the kernel PCA (KPCA), the Gaussian mixture model (GMM), and the autoassociative neural network (ANN). The proposed OCCNN solution presents increased accuracy and F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> score over conventional algorithms, without the need to set critical parameters, while OCCNN <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> provides the best performance in terms of F <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> score, accuracy, and responsiveness." @default.
- W3100815891 created "2020-11-23" @default.
- W3100815891 creator A5005720550 @default.
- W3100815891 creator A5050535168 @default.
- W3100815891 date "2021-01-01" @default.
- W3100815891 modified "2023-10-01" @default.
- W3100815891 title "Machine Learning for Automatic Processing of Modal Analysis in Damage Detection of Bridges" @default.
- W3100815891 cites W151389796 @default.
- W3100815891 cites W1569457423 @default.
- W3100815891 cites W1587559447 @default.
- W3100815891 cites W1968781827 @default.
- W3100815891 cites W1987405916 @default.
- W3100815891 cites W2016534479 @default.
- W3100815891 cites W2017057816 @default.
- W3100815891 cites W2028885777 @default.
- W3100815891 cites W2029065715 @default.
- W3100815891 cites W2036962269 @default.
- W3100815891 cites W2098312962 @default.
- W3100815891 cites W2110697993 @default.
- W3100815891 cites W2128728535 @default.
- W3100815891 cites W2140095548 @default.
- W3100815891 cites W2140136927 @default.
- W3100815891 cites W2287771544 @default.
- W3100815891 cites W2306156429 @default.
- W3100815891 cites W2327857116 @default.
- W3100815891 cites W2346429484 @default.
- W3100815891 cites W2411806343 @default.
- W3100815891 cites W2516604595 @default.
- W3100815891 cites W2583587974 @default.
- W3100815891 cites W2588773726 @default.
- W3100815891 cites W2728758610 @default.
- W3100815891 cites W2754528317 @default.
- W3100815891 cites W2770010945 @default.
- W3100815891 cites W2885534591 @default.
- W3100815891 cites W2896635631 @default.
- W3100815891 cites W2902657475 @default.
- W3100815891 cites W2903181051 @default.
- W3100815891 cites W3008222620 @default.
- W3100815891 cites W3009392228 @default.
- W3100815891 cites W3009937648 @default.
- W3100815891 cites W3105939760 @default.
- W3100815891 cites W4252794826 @default.
- W3100815891 doi "https://doi.org/10.1109/tim.2020.3038288" @default.
- W3100815891 hasPublicationYear "2021" @default.
- W3100815891 type Work @default.
- W3100815891 sameAs 3100815891 @default.
- W3100815891 citedByCount "22" @default.
- W3100815891 countsByYear W31008158912021 @default.
- W3100815891 countsByYear W31008158912022 @default.
- W3100815891 countsByYear W31008158912023 @default.
- W3100815891 crossrefType "journal-article" @default.
- W3100815891 hasAuthorship W3100815891A5005720550 @default.
- W3100815891 hasAuthorship W3100815891A5050535168 @default.
- W3100815891 hasConcept C119857082 @default.
- W3100815891 hasConcept C122280245 @default.
- W3100815891 hasConcept C12267149 @default.
- W3100815891 hasConcept C124101348 @default.
- W3100815891 hasConcept C153180895 @default.
- W3100815891 hasConcept C154945302 @default.
- W3100815891 hasConcept C182335926 @default.
- W3100815891 hasConcept C27438332 @default.
- W3100815891 hasConcept C41008148 @default.
- W3100815891 hasConcept C50644808 @default.
- W3100815891 hasConcept C52622490 @default.
- W3100815891 hasConcept C73555534 @default.
- W3100815891 hasConcept C739882 @default.
- W3100815891 hasConcept C95623464 @default.
- W3100815891 hasConceptScore W3100815891C119857082 @default.
- W3100815891 hasConceptScore W3100815891C122280245 @default.
- W3100815891 hasConceptScore W3100815891C12267149 @default.
- W3100815891 hasConceptScore W3100815891C124101348 @default.
- W3100815891 hasConceptScore W3100815891C153180895 @default.
- W3100815891 hasConceptScore W3100815891C154945302 @default.
- W3100815891 hasConceptScore W3100815891C182335926 @default.
- W3100815891 hasConceptScore W3100815891C27438332 @default.
- W3100815891 hasConceptScore W3100815891C41008148 @default.
- W3100815891 hasConceptScore W3100815891C50644808 @default.
- W3100815891 hasConceptScore W3100815891C52622490 @default.
- W3100815891 hasConceptScore W3100815891C73555534 @default.
- W3100815891 hasConceptScore W3100815891C739882 @default.
- W3100815891 hasConceptScore W3100815891C95623464 @default.
- W3100815891 hasLocation W31008158911 @default.
- W3100815891 hasOpenAccess W3100815891 @default.
- W3100815891 hasPrimaryLocation W31008158911 @default.
- W3100815891 hasRelatedWork W2095975892 @default.
- W3100815891 hasRelatedWork W2113853643 @default.
- W3100815891 hasRelatedWork W2132729794 @default.
- W3100815891 hasRelatedWork W2147478239 @default.
- W3100815891 hasRelatedWork W2151625750 @default.
- W3100815891 hasRelatedWork W2352079147 @default.
- W3100815891 hasRelatedWork W2372383879 @default.
- W3100815891 hasRelatedWork W2379797945 @default.
- W3100815891 hasRelatedWork W2386940100 @default.
- W3100815891 hasRelatedWork W2392812607 @default.
- W3100815891 hasVolume "70" @default.
- W3100815891 isParatext "false" @default.
- W3100815891 isRetracted "false" @default.
- W3100815891 magId "3100815891" @default.