Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100821729> ?p ?o ?g. }
- W3100821729 endingPage "650" @default.
- W3100821729 startingPage "615" @default.
- W3100821729 abstract "We consider the Laplacian on a class of smooth domains Ω⊂Rν, ν≥2, with attractive Robin boundary conditions:QαΩu=−Δu,∂u∂n=αu on ∂Ω,α>0, where n is the outer unit normal, and study the asymptotics of its eigenvalues Ej(QαΩ) as well as some other spectral properties for α tending to +∞. We work with both compact domains and non-compact ones with a suitable behavior at infinity. For domains with compact C2 boundaries we show that, for each fixed j,Ej(QαΩ)=−α2+μj(α)+O(logα), where μj(α) is the jth eigenvalue of the operator −ΔS−(ν−1)αH with (−ΔS) and H being respectively the positive Laplace–Beltrami operator and the mean curvature on ∂Ω. Analogous results are obtained for a class of domains with non-compact boundaries. In particular, we discuss the existence of eigenvalues for non-compact domains and the existence of spectral gaps for periodic domains. We also show that the remainder estimate can be improved under stronger regularity assumptions. The effective Hamiltonian −ΔS−(ν−1)αH enters the framework of semi-classical Schrödinger operators on manifolds, and we provide the asymptotics of its eigenvalues for large α under various geometric assumptions. In particular, we describe several cases for which our asymptotics provides gaps between the eigenvalues of QαΩ for large α. On considère le laplacien sur une classe de domaines réguliers Ω⊂Rν, ν≥2, avec conditions de Robin attractives :QαΩu=−Δu,∂u∂n=αu sur ∂Ω,α>0, où n est la normale unitaire sortante, et on étudie le comportement de ses valeurs propres Ej(QαΩ) ainsi que d'autres propriétés spectrales lorsque α tend vers +∞. On considère des domaines soit compacts, soit non-compacts avec un comportement convenable à l'infini. Pour les domaines C2 dont le bord est compact, on démontre que pour tout j fixé on aEj(QαΩ)=−α2+μj(α)+O(logα), où μj(α) est la jème valeur propre de l'opérateur −ΔS−(ν−1)αH, où (−ΔS) et H sont respectivement l'opérateur de Laplace–Beltrami positif et la courbure moyenne sur ∂Ω. Des résultats analogues sont obtenus pour une classe de domaines à bord non-compact. En particulier, on étudie l'existence de valeurs propres pour une classe de domaines noncompacts ainsi que l'existence de trous spectraux pour des domaines périodiques. On montre également que l'estimée du reste peut être améliorée sous des hypothèses de régularité plus fortes. Le hamiltonien effectif −ΔS−(ν−1)αH entre dans le cadre des opérateurs de Schrödinger semi-classiques sur des variétés, et on décrit l'asymptotique de ses valeurs propres lorsque α→+∞ pour diverses hypothèses géométriques. En particulier, on dérive des cas pour lequels notre asymptotique donne l'existence de trous entre les valeurs propres de QαΩ pour α suffisamment grand." @default.
- W3100821729 created "2020-11-23" @default.
- W3100821729 creator A5046730581 @default.
- W3100821729 creator A5080332107 @default.
- W3100821729 date "2016-10-01" @default.
- W3100821729 modified "2023-10-05" @default.
- W3100821729 title "An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter" @default.
- W3100821729 cites W180274869 @default.
- W3100821729 cites W1977682890 @default.
- W3100821729 cites W1980093910 @default.
- W3100821729 cites W1983449886 @default.
- W3100821729 cites W1989418344 @default.
- W3100821729 cites W1993904723 @default.
- W3100821729 cites W2006810711 @default.
- W3100821729 cites W2019697831 @default.
- W3100821729 cites W2023510134 @default.
- W3100821729 cites W2029993762 @default.
- W3100821729 cites W2035312650 @default.
- W3100821729 cites W2038448944 @default.
- W3100821729 cites W2040846401 @default.
- W3100821729 cites W2048472068 @default.
- W3100821729 cites W2072276602 @default.
- W3100821729 cites W2073017158 @default.
- W3100821729 cites W2085311418 @default.
- W3100821729 cites W2088341366 @default.
- W3100821729 cites W2126785540 @default.
- W3100821729 cites W2130317282 @default.
- W3100821729 cites W2159315539 @default.
- W3100821729 cites W2963009813 @default.
- W3100821729 cites W2963488884 @default.
- W3100821729 cites W2963749139 @default.
- W3100821729 cites W2964249819 @default.
- W3100821729 cites W3099814653 @default.
- W3100821729 cites W3103517243 @default.
- W3100821729 cites W3106309468 @default.
- W3100821729 cites W3106321170 @default.
- W3100821729 doi "https://doi.org/10.1016/j.matpur.2016.03.005" @default.
- W3100821729 hasPublicationYear "2016" @default.
- W3100821729 type Work @default.
- W3100821729 sameAs 3100821729 @default.
- W3100821729 citedByCount "37" @default.
- W3100821729 countsByYear W31008217292015 @default.
- W3100821729 countsByYear W31008217292016 @default.
- W3100821729 countsByYear W31008217292017 @default.
- W3100821729 countsByYear W31008217292018 @default.
- W3100821729 countsByYear W31008217292019 @default.
- W3100821729 countsByYear W31008217292020 @default.
- W3100821729 countsByYear W31008217292021 @default.
- W3100821729 countsByYear W31008217292022 @default.
- W3100821729 countsByYear W31008217292023 @default.
- W3100821729 crossrefType "journal-article" @default.
- W3100821729 hasAuthorship W3100821729A5046730581 @default.
- W3100821729 hasAuthorship W3100821729A5080332107 @default.
- W3100821729 hasBestOaLocation W31008217291 @default.
- W3100821729 hasConcept C104317684 @default.
- W3100821729 hasConcept C121332964 @default.
- W3100821729 hasConcept C126255220 @default.
- W3100821729 hasConcept C130787639 @default.
- W3100821729 hasConcept C134306372 @default.
- W3100821729 hasConcept C158448853 @default.
- W3100821729 hasConcept C158693339 @default.
- W3100821729 hasConcept C165700671 @default.
- W3100821729 hasConcept C17020691 @default.
- W3100821729 hasConcept C185592680 @default.
- W3100821729 hasConcept C195065555 @default.
- W3100821729 hasConcept C202444582 @default.
- W3100821729 hasConcept C2524010 @default.
- W3100821729 hasConcept C33923547 @default.
- W3100821729 hasConcept C37914503 @default.
- W3100821729 hasConcept C55493867 @default.
- W3100821729 hasConcept C62520636 @default.
- W3100821729 hasConcept C86339819 @default.
- W3100821729 hasConceptScore W3100821729C104317684 @default.
- W3100821729 hasConceptScore W3100821729C121332964 @default.
- W3100821729 hasConceptScore W3100821729C126255220 @default.
- W3100821729 hasConceptScore W3100821729C130787639 @default.
- W3100821729 hasConceptScore W3100821729C134306372 @default.
- W3100821729 hasConceptScore W3100821729C158448853 @default.
- W3100821729 hasConceptScore W3100821729C158693339 @default.
- W3100821729 hasConceptScore W3100821729C165700671 @default.
- W3100821729 hasConceptScore W3100821729C17020691 @default.
- W3100821729 hasConceptScore W3100821729C185592680 @default.
- W3100821729 hasConceptScore W3100821729C195065555 @default.
- W3100821729 hasConceptScore W3100821729C202444582 @default.
- W3100821729 hasConceptScore W3100821729C2524010 @default.
- W3100821729 hasConceptScore W3100821729C33923547 @default.
- W3100821729 hasConceptScore W3100821729C37914503 @default.
- W3100821729 hasConceptScore W3100821729C55493867 @default.
- W3100821729 hasConceptScore W3100821729C62520636 @default.
- W3100821729 hasConceptScore W3100821729C86339819 @default.
- W3100821729 hasFunder F4320320883 @default.
- W3100821729 hasFunder F4320322892 @default.
- W3100821729 hasIssue "4" @default.
- W3100821729 hasLocation W31008217291 @default.
- W3100821729 hasLocation W31008217292 @default.
- W3100821729 hasLocation W31008217293 @default.
- W3100821729 hasLocation W31008217294 @default.
- W3100821729 hasLocation W31008217295 @default.