Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100826259> ?p ?o ?g. }
- W3100826259 abstract "Abstract In their previous work, Srinivas et al. 1 have shown that implicit fingerprints capture ligands and proteins in a shared latent space, typically for the purposes of virtual screening with collaborative filtering models applied on known bioactivity data. In this work, we extend these implicit fingerprints/descriptors using deep learning techniques to translate latent descriptors into discrete representations of molecules (SMILES), without explicitly optimizing for chemical properties. This allows the design of new compounds based upon the latent representation of nearby proteins, thereby encoding drug-like properties including binding affinities to known proteins. The implicit descriptor method does not require any fingerprint similarity search, which makes the method free of any bias arising from the empirical nature of the fingerprint models. 1 We evaluate the properties of the novel drugs generated by our approach using physical properties of drug-like molecules and chemical complexity. Additionally, we analyze the reliability of the biological activity of the new compounds generated using this method by employing models of protein ligand interaction, which assists in assessing the potential binding affinity of the designed compounds. We find that the generated compounds exhibit properties of chemically feasible compounds and are likely to be excellent binders to known proteins. Furthermore, we also analyze the diversity of compounds created using the Tanimoto distance and conclude that there is a wide diversity in the generated compounds. Graphical TOC Entry" @default.
- W3100826259 created "2020-11-23" @default.
- W3100826259 creator A5023773515 @default.
- W3100826259 creator A5049447118 @default.
- W3100826259 creator A5069273525 @default.
- W3100826259 creator A5089291074 @default.
- W3100826259 date "2020-11-20" @default.
- W3100826259 modified "2023-09-27" @default.
- W3100826259 title "Deep Learning-based Ligand Design using Shared Latent Implicit Fingerprints from Collaborative Filtering" @default.
- W3100826259 cites W1966553486 @default.
- W3100826259 cites W1968319881 @default.
- W3100826259 cites W1981737096 @default.
- W3100826259 cites W1988037271 @default.
- W3100826259 cites W1998848097 @default.
- W3100826259 cites W2001515828 @default.
- W3100826259 cites W2001883493 @default.
- W3100826259 cites W2014276094 @default.
- W3100826259 cites W2028629022 @default.
- W3100826259 cites W2034549041 @default.
- W3100826259 cites W2042110087 @default.
- W3100826259 cites W2060531713 @default.
- W3100826259 cites W2062385571 @default.
- W3100826259 cites W2074978477 @default.
- W3100826259 cites W2078144380 @default.
- W3100826259 cites W2100672820 @default.
- W3100826259 cites W2125781388 @default.
- W3100826259 cites W2134967712 @default.
- W3100826259 cites W2153838454 @default.
- W3100826259 cites W2160592148 @default.
- W3100826259 cites W2169678694 @default.
- W3100826259 cites W2265803834 @default.
- W3100826259 cites W2268755124 @default.
- W3100826259 cites W2325179027 @default.
- W3100826259 cites W2362265365 @default.
- W3100826259 cites W2404472757 @default.
- W3100826259 cites W2521868064 @default.
- W3100826259 cites W2539902382 @default.
- W3100826259 cites W2546841151 @default.
- W3100826259 cites W2566398673 @default.
- W3100826259 cites W2588284375 @default.
- W3100826259 cites W2591883888 @default.
- W3100826259 cites W2790808809 @default.
- W3100826259 cites W2793534579 @default.
- W3100826259 cites W2797908443 @default.
- W3100826259 cites W2805758713 @default.
- W3100826259 cites W2886791556 @default.
- W3100826259 cites W2945755098 @default.
- W3100826259 cites W2963028280 @default.
- W3100826259 cites W2963445908 @default.
- W3100826259 cites W2981851313 @default.
- W3100826259 cites W2991736596 @default.
- W3100826259 cites W3098269892 @default.
- W3100826259 cites W3099913749 @default.
- W3100826259 cites W3100751385 @default.
- W3100826259 cites W3104705366 @default.
- W3100826259 doi "https://doi.org/10.1101/2020.11.18.389213" @default.
- W3100826259 hasPublicationYear "2020" @default.
- W3100826259 type Work @default.
- W3100826259 sameAs 3100826259 @default.
- W3100826259 citedByCount "0" @default.
- W3100826259 crossrefType "posted-content" @default.
- W3100826259 hasAuthorship W3100826259A5023773515 @default.
- W3100826259 hasAuthorship W3100826259A5049447118 @default.
- W3100826259 hasAuthorship W3100826259A5069273525 @default.
- W3100826259 hasAuthorship W3100826259A5089291074 @default.
- W3100826259 hasBestOaLocation W31008262591 @default.
- W3100826259 hasConcept C103278499 @default.
- W3100826259 hasConcept C103697762 @default.
- W3100826259 hasConcept C115961682 @default.
- W3100826259 hasConcept C119857082 @default.
- W3100826259 hasConcept C154945302 @default.
- W3100826259 hasConcept C164126121 @default.
- W3100826259 hasConcept C164923092 @default.
- W3100826259 hasConcept C170493617 @default.
- W3100826259 hasConcept C17744445 @default.
- W3100826259 hasConcept C185592680 @default.
- W3100826259 hasConcept C186060115 @default.
- W3100826259 hasConcept C199539241 @default.
- W3100826259 hasConcept C21569690 @default.
- W3100826259 hasConcept C2776359362 @default.
- W3100826259 hasConcept C2777826928 @default.
- W3100826259 hasConcept C2780283098 @default.
- W3100826259 hasConcept C3018795828 @default.
- W3100826259 hasConcept C41008148 @default.
- W3100826259 hasConcept C55493867 @default.
- W3100826259 hasConcept C557471498 @default.
- W3100826259 hasConcept C71240020 @default.
- W3100826259 hasConcept C74187038 @default.
- W3100826259 hasConcept C86803240 @default.
- W3100826259 hasConcept C94625758 @default.
- W3100826259 hasConcept C99726746 @default.
- W3100826259 hasConceptScore W3100826259C103278499 @default.
- W3100826259 hasConceptScore W3100826259C103697762 @default.
- W3100826259 hasConceptScore W3100826259C115961682 @default.
- W3100826259 hasConceptScore W3100826259C119857082 @default.
- W3100826259 hasConceptScore W3100826259C154945302 @default.
- W3100826259 hasConceptScore W3100826259C164126121 @default.
- W3100826259 hasConceptScore W3100826259C164923092 @default.
- W3100826259 hasConceptScore W3100826259C170493617 @default.
- W3100826259 hasConceptScore W3100826259C17744445 @default.