Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100827172> ?p ?o ?g. }
- W3100827172 endingPage "203096" @default.
- W3100827172 startingPage "203086" @default.
- W3100827172 abstract "Accurate and reliable short-term electric load forecasting (STLF) plays a critical role in power system to enhance its routine management efficiency and reduce operational costs. However, most of the existing STLF methods suffer from lack of appropriate feature selection procedure. In this paper, a multifactorial framework (MF) possessing the potential to contribute more satisfactory forecasting results and computational speed is proposed. Moreover, a graphical tool for easy and accurate computation of day-ahead load forecast is implemented via MATLAB App Designer. Firstly, we choose the candidate feature set by analyzing the raw electricity consumption data. Then, partial mutual information is adopted as criterion to eliminate these irrelevant and redundant ones among candidate features for the purpose of reducing the input subset and retaining these most relevant. At last, the selected features are used as the input of the well-established artificial neural network (ANN) model optimized by genetic algorithm and cross validation to implement prediction. The MF is applied for the load data measured from 2016 to 2018 in Jinan, and then some competitive experiments and extensive simulations are carried out and results indicates that the ANN-based model with selected features significantly outperforms other alternative models with single features or a few of features regarding mean absolute percent error. In addition, the parallel structure of ANN and the lower dimension of the input space enable the model to achieve faster calculation speed." @default.
- W3100827172 created "2020-11-23" @default.
- W3100827172 creator A5008637032 @default.
- W3100827172 creator A5018013317 @default.
- W3100827172 creator A5028736010 @default.
- W3100827172 creator A5047221078 @default.
- W3100827172 date "2020-01-01" @default.
- W3100827172 modified "2023-10-16" @default.
- W3100827172 title "A Multifactorial Framework for Short-Term Load Forecasting System as Well as the Jinan’s Case Study" @default.
- W3100827172 cites W1963682480 @default.
- W3100827172 cites W1964960433 @default.
- W3100827172 cites W1984452465 @default.
- W3100827172 cites W1992661499 @default.
- W3100827172 cites W1996730695 @default.
- W3100827172 cites W1999198322 @default.
- W3100827172 cites W2001165499 @default.
- W3100827172 cites W2004630602 @default.
- W3100827172 cites W2012302230 @default.
- W3100827172 cites W2015799639 @default.
- W3100827172 cites W2018358153 @default.
- W3100827172 cites W2018767964 @default.
- W3100827172 cites W2026619093 @default.
- W3100827172 cites W2042792535 @default.
- W3100827172 cites W2067576900 @default.
- W3100827172 cites W2083172453 @default.
- W3100827172 cites W2104571697 @default.
- W3100827172 cites W2133720763 @default.
- W3100827172 cites W2151767444 @default.
- W3100827172 cites W2158161939 @default.
- W3100827172 cites W2158442843 @default.
- W3100827172 cites W2189919008 @default.
- W3100827172 cites W2341910059 @default.
- W3100827172 cites W2342107842 @default.
- W3100827172 cites W241231893 @default.
- W3100827172 cites W2533852672 @default.
- W3100827172 cites W2571945220 @default.
- W3100827172 cites W2604099671 @default.
- W3100827172 cites W2764791077 @default.
- W3100827172 cites W2767111237 @default.
- W3100827172 cites W2800571504 @default.
- W3100827172 cites W2891898214 @default.
- W3100827172 cites W2999323915 @default.
- W3100827172 cites W3015663469 @default.
- W3100827172 doi "https://doi.org/10.1109/access.2020.3036675" @default.
- W3100827172 hasPublicationYear "2020" @default.
- W3100827172 type Work @default.
- W3100827172 sameAs 3100827172 @default.
- W3100827172 citedByCount "8" @default.
- W3100827172 countsByYear W31008271722021 @default.
- W3100827172 countsByYear W31008271722022 @default.
- W3100827172 countsByYear W31008271722023 @default.
- W3100827172 crossrefType "journal-article" @default.
- W3100827172 hasAuthorship W3100827172A5008637032 @default.
- W3100827172 hasAuthorship W3100827172A5018013317 @default.
- W3100827172 hasAuthorship W3100827172A5028736010 @default.
- W3100827172 hasAuthorship W3100827172A5047221078 @default.
- W3100827172 hasBestOaLocation W31008271721 @default.
- W3100827172 hasConcept C111012933 @default.
- W3100827172 hasConcept C111919701 @default.
- W3100827172 hasConcept C11413529 @default.
- W3100827172 hasConcept C119857082 @default.
- W3100827172 hasConcept C121332964 @default.
- W3100827172 hasConcept C124101348 @default.
- W3100827172 hasConcept C132964779 @default.
- W3100827172 hasConcept C138885662 @default.
- W3100827172 hasConcept C148483581 @default.
- W3100827172 hasConcept C150217764 @default.
- W3100827172 hasConcept C154945302 @default.
- W3100827172 hasConcept C163258240 @default.
- W3100827172 hasConcept C177264268 @default.
- W3100827172 hasConcept C199360897 @default.
- W3100827172 hasConcept C202444582 @default.
- W3100827172 hasConcept C2776401178 @default.
- W3100827172 hasConcept C2780365114 @default.
- W3100827172 hasConcept C33676613 @default.
- W3100827172 hasConcept C33923547 @default.
- W3100827172 hasConcept C41008148 @default.
- W3100827172 hasConcept C41895202 @default.
- W3100827172 hasConcept C45374587 @default.
- W3100827172 hasConcept C50644808 @default.
- W3100827172 hasConcept C61797465 @default.
- W3100827172 hasConcept C62520636 @default.
- W3100827172 hasConcept C8880873 @default.
- W3100827172 hasConcept C89227174 @default.
- W3100827172 hasConceptScore W3100827172C111012933 @default.
- W3100827172 hasConceptScore W3100827172C111919701 @default.
- W3100827172 hasConceptScore W3100827172C11413529 @default.
- W3100827172 hasConceptScore W3100827172C119857082 @default.
- W3100827172 hasConceptScore W3100827172C121332964 @default.
- W3100827172 hasConceptScore W3100827172C124101348 @default.
- W3100827172 hasConceptScore W3100827172C132964779 @default.
- W3100827172 hasConceptScore W3100827172C138885662 @default.
- W3100827172 hasConceptScore W3100827172C148483581 @default.
- W3100827172 hasConceptScore W3100827172C150217764 @default.
- W3100827172 hasConceptScore W3100827172C154945302 @default.
- W3100827172 hasConceptScore W3100827172C163258240 @default.
- W3100827172 hasConceptScore W3100827172C177264268 @default.
- W3100827172 hasConceptScore W3100827172C199360897 @default.