Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100831904> ?p ?o ?g. }
- W3100831904 endingPage "065005" @default.
- W3100831904 startingPage "065005" @default.
- W3100831904 abstract "In contrast to the coupling parameter in the usual perturbative QCD (pQCD), the coupling parameter in the analytic QCD models has cuts only on the negative semiaxis of the Q^2-plane (where q^2 = -Q^2 is the momentum squared), thus reflecting correctly the analytic structure of the spacelike observables. The Minimal Analytic model (MA, named also APT) of Shirkov and Solovtsov removes the nonphysical cut (at positive Q^2) of the usual pQCD coupling and keeps the pQCD cut discontinuity of the coupling at negative Q^2 unchanged. In order to evaluate in MA the physical QCD quantities whose perturbation expansion involves noninteger powers of the pQCD coupling, a specific method of construction of MA analogs of noninteger pQCD powers was developed by Bakulev, Mikhailov and Stefanis (BMS). We present a construction, applicable now in any analytic QCD model, of analytic analogs of noninteger pQCD powers; this method generalizes the BMS approach obtained in the framework of MA. We need to know only the discontinuity function of the analytic coupling (the analog of the pQCD coupling) along its cut in order to obtain the analytic analogs of the noninteger powers of the pQCD coupling, as well as their timelike (Minkowskian) counterparts. As an illustration, we apply the method to the evaluation of the width for the Higgs decay into b+(bar b) pair." @default.
- W3100831904 created "2020-11-23" @default.
- W3100831904 creator A5052568748 @default.
- W3100831904 creator A5063673311 @default.
- W3100831904 date "2012-05-15" @default.
- W3100831904 modified "2023-10-06" @default.
- W3100831904 title "Analogs of noninteger powers in general analytic QCD" @default.
- W3100831904 cites W1488943751 @default.
- W3100831904 cites W1490827403 @default.
- W3100831904 cites W1502682447 @default.
- W3100831904 cites W1521523979 @default.
- W3100831904 cites W1551810266 @default.
- W3100831904 cites W1638111448 @default.
- W3100831904 cites W1642109823 @default.
- W3100831904 cites W164856360 @default.
- W3100831904 cites W1834144728 @default.
- W3100831904 cites W1962175223 @default.
- W3100831904 cites W1972151213 @default.
- W3100831904 cites W1980775801 @default.
- W3100831904 cites W1981058868 @default.
- W3100831904 cites W1983883348 @default.
- W3100831904 cites W1985780518 @default.
- W3100831904 cites W1986706334 @default.
- W3100831904 cites W1988074815 @default.
- W3100831904 cites W1988524468 @default.
- W3100831904 cites W1988613551 @default.
- W3100831904 cites W1998743850 @default.
- W3100831904 cites W2010811827 @default.
- W3100831904 cites W2016616562 @default.
- W3100831904 cites W2016862940 @default.
- W3100831904 cites W2037405969 @default.
- W3100831904 cites W2039968510 @default.
- W3100831904 cites W2041671263 @default.
- W3100831904 cites W2045472496 @default.
- W3100831904 cites W2046110588 @default.
- W3100831904 cites W2047824531 @default.
- W3100831904 cites W2049182617 @default.
- W3100831904 cites W2055032269 @default.
- W3100831904 cites W2056758859 @default.
- W3100831904 cites W2062208964 @default.
- W3100831904 cites W2062460005 @default.
- W3100831904 cites W2070410194 @default.
- W3100831904 cites W2085130898 @default.
- W3100831904 cites W2085396540 @default.
- W3100831904 cites W2089428418 @default.
- W3100831904 cites W2089688819 @default.
- W3100831904 cites W209130282 @default.
- W3100831904 cites W2104994244 @default.
- W3100831904 cites W2126048895 @default.
- W3100831904 cites W2145726341 @default.
- W3100831904 cites W2149438101 @default.
- W3100831904 cites W2152417884 @default.
- W3100831904 cites W2159415004 @default.
- W3100831904 cites W2165739256 @default.
- W3100831904 cites W2328419526 @default.
- W3100831904 cites W2333951358 @default.
- W3100831904 cites W2952915580 @default.
- W3100831904 cites W3098752015 @default.
- W3100831904 cites W3100038166 @default.
- W3100831904 cites W3100039181 @default.
- W3100831904 cites W3100122116 @default.
- W3100831904 cites W3101294262 @default.
- W3100831904 cites W3102147850 @default.
- W3100831904 cites W3102911698 @default.
- W3100831904 cites W3103483036 @default.
- W3100831904 cites W3105563871 @default.
- W3100831904 cites W3106031812 @default.
- W3100831904 cites W3106168956 @default.
- W3100831904 cites W3124348020 @default.
- W3100831904 cites W3124409501 @default.
- W3100831904 cites W4292545695 @default.
- W3100831904 cites W51919903 @default.
- W3100831904 doi "https://doi.org/10.1088/0954-3899/39/6/065005" @default.
- W3100831904 hasPublicationYear "2012" @default.
- W3100831904 type Work @default.
- W3100831904 sameAs 3100831904 @default.
- W3100831904 citedByCount "44" @default.
- W3100831904 countsByYear W31008319042012 @default.
- W3100831904 countsByYear W31008319042013 @default.
- W3100831904 countsByYear W31008319042014 @default.
- W3100831904 countsByYear W31008319042015 @default.
- W3100831904 countsByYear W31008319042016 @default.
- W3100831904 countsByYear W31008319042017 @default.
- W3100831904 countsByYear W31008319042018 @default.
- W3100831904 countsByYear W31008319042019 @default.
- W3100831904 countsByYear W31008319042020 @default.
- W3100831904 countsByYear W31008319042021 @default.
- W3100831904 countsByYear W31008319042022 @default.
- W3100831904 countsByYear W31008319042023 @default.
- W3100831904 crossrefType "journal-article" @default.
- W3100831904 hasAuthorship W3100831904A5052568748 @default.
- W3100831904 hasAuthorship W3100831904A5063673311 @default.
- W3100831904 hasBestOaLocation W31008319042 @default.
- W3100831904 hasConcept C10138342 @default.
- W3100831904 hasConcept C109214941 @default.
- W3100831904 hasConcept C117137515 @default.
- W3100831904 hasConcept C121332964 @default.
- W3100831904 hasConcept C127413603 @default.