Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100855932> ?p ?o ?g. }
- W3100855932 endingPage "1383" @default.
- W3100855932 startingPage "1368" @default.
- W3100855932 abstract "High resolution Magnetic Resonance (MR) images are desired for accurate diagnostics. In practice, image resolution is restricted by factors like hardware and processing constraints. Recently, deep learning methods have been shown to produce compelling state-of-the-art results for image enhancement/super-resolution. Paying particular attention to desired hi-resolution MR image structure, we propose a new regularized network that exploits image priors, namely a low-rank structure and a sharpness prior to enhance deep MR image super-resolution (SR). Our contributions are then incorporating these priors in an analytically tractable fashion as well as towards a novel prior guided network architecture that accomplishes the super-resolution task. This is particularly challenging for the low rank prior since the rank is not a differentiable function of the image matrix (and hence the network parameters), an issue we address by pursuing differentiable approximations of the rank. Sharpness is emphasized by the variance of the Laplacian which we show can be implemented by a fixed feedback layer at the output of the network. As a key extension, we modify the fixed feedback (Laplacian) layer by learning a new set of training data driven filters that are optimized for enhanced sharpness. Experiments performed on publicly available MR brain image databases and comparisons against existing state-of-the-art methods show that the proposed prior guided network offers significant practical gains in terms of improved SNR/image quality measures. Because our priors are on output images, the proposed method is versatile and can be combined with a wide variety of existing network architectures to further enhance their performance." @default.
- W3100855932 created "2020-11-23" @default.
- W3100855932 creator A5013354936 @default.
- W3100855932 creator A5014013504 @default.
- W3100855932 creator A5024058277 @default.
- W3100855932 creator A5063172412 @default.
- W3100855932 date "2020-01-01" @default.
- W3100855932 modified "2023-10-02" @default.
- W3100855932 title "Deep MR Brain Image Super-Resolution Using Spatio-Structural Priors" @default.
- W3100855932 cites W1885185971 @default.
- W3100855932 cites W1919542679 @default.
- W3100855932 cites W1930824406 @default.
- W3100855932 cites W2012019590 @default.
- W3100855932 cites W2024729467 @default.
- W3100855932 cites W2063237661 @default.
- W3100855932 cites W2067108728 @default.
- W3100855932 cites W2084603169 @default.
- W3100855932 cites W2092700976 @default.
- W3100855932 cites W2097074225 @default.
- W3100855932 cites W2112796928 @default.
- W3100855932 cites W2113524221 @default.
- W3100855932 cites W2118963448 @default.
- W3100855932 cites W2121058967 @default.
- W3100855932 cites W2165939075 @default.
- W3100855932 cites W2187351272 @default.
- W3100855932 cites W2214802144 @default.
- W3100855932 cites W2242218935 @default.
- W3100855932 cites W2331918145 @default.
- W3100855932 cites W2345557152 @default.
- W3100855932 cites W2345938226 @default.
- W3100855932 cites W2522924304 @default.
- W3100855932 cites W2557668825 @default.
- W3100855932 cites W2620296437 @default.
- W3100855932 cites W2709402577 @default.
- W3100855932 cites W2739560024 @default.
- W3100855932 cites W2739757502 @default.
- W3100855932 cites W2741196023 @default.
- W3100855932 cites W2752729515 @default.
- W3100855932 cites W2787779974 @default.
- W3100855932 cites W2794800073 @default.
- W3100855932 cites W2795630303 @default.
- W3100855932 cites W2892196060 @default.
- W3100855932 cites W2915130236 @default.
- W3100855932 cites W2919115771 @default.
- W3100855932 cites W2963372104 @default.
- W3100855932 cites W2963671574 @default.
- W3100855932 cites W2963704386 @default.
- W3100855932 cites W2964101377 @default.
- W3100855932 cites W3098848838 @default.
- W3100855932 cites W3101162162 @default.
- W3100855932 doi "https://doi.org/10.1109/tip.2019.2942510" @default.
- W3100855932 hasPublicationYear "2020" @default.
- W3100855932 type Work @default.
- W3100855932 sameAs 3100855932 @default.
- W3100855932 citedByCount "29" @default.
- W3100855932 countsByYear W31008559322020 @default.
- W3100855932 countsByYear W31008559322021 @default.
- W3100855932 countsByYear W31008559322022 @default.
- W3100855932 countsByYear W31008559322023 @default.
- W3100855932 crossrefType "journal-article" @default.
- W3100855932 hasAuthorship W3100855932A5013354936 @default.
- W3100855932 hasAuthorship W3100855932A5014013504 @default.
- W3100855932 hasAuthorship W3100855932A5024058277 @default.
- W3100855932 hasAuthorship W3100855932A5063172412 @default.
- W3100855932 hasBestOaLocation W31008559321 @default.
- W3100855932 hasConcept C107673813 @default.
- W3100855932 hasConcept C11413529 @default.
- W3100855932 hasConcept C114614502 @default.
- W3100855932 hasConcept C115961682 @default.
- W3100855932 hasConcept C134306372 @default.
- W3100855932 hasConcept C153180895 @default.
- W3100855932 hasConcept C154945302 @default.
- W3100855932 hasConcept C164226766 @default.
- W3100855932 hasConcept C177769412 @default.
- W3100855932 hasConcept C202615002 @default.
- W3100855932 hasConcept C205372480 @default.
- W3100855932 hasConcept C31972630 @default.
- W3100855932 hasConcept C33923547 @default.
- W3100855932 hasConcept C41008148 @default.
- W3100855932 hasConcept C55020928 @default.
- W3100855932 hasConceptScore W3100855932C107673813 @default.
- W3100855932 hasConceptScore W3100855932C11413529 @default.
- W3100855932 hasConceptScore W3100855932C114614502 @default.
- W3100855932 hasConceptScore W3100855932C115961682 @default.
- W3100855932 hasConceptScore W3100855932C134306372 @default.
- W3100855932 hasConceptScore W3100855932C153180895 @default.
- W3100855932 hasConceptScore W3100855932C154945302 @default.
- W3100855932 hasConceptScore W3100855932C164226766 @default.
- W3100855932 hasConceptScore W3100855932C177769412 @default.
- W3100855932 hasConceptScore W3100855932C202615002 @default.
- W3100855932 hasConceptScore W3100855932C205372480 @default.
- W3100855932 hasConceptScore W3100855932C31972630 @default.
- W3100855932 hasConceptScore W3100855932C33923547 @default.
- W3100855932 hasConceptScore W3100855932C41008148 @default.
- W3100855932 hasConceptScore W3100855932C55020928 @default.
- W3100855932 hasFunder F4320332161 @default.
- W3100855932 hasLocation W31008559321 @default.
- W3100855932 hasLocation W31008559322 @default.