Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100873882> ?p ?o ?g. }
- W3100873882 endingPage "045010" @default.
- W3100873882 startingPage "045010" @default.
- W3100873882 abstract "Boltzmann machines are the basis of several deep learning methods that have been successfully applied to both supervised and unsupervised machine learning tasks. These models assume that a dataset is generated according to a Boltzmann distribution, and the goal of the training procedure is to learn the set of parameters that most closely match the input data distribution. Training such models is difficult due to the intractability of traditional sampling techniques, and proposals using quantum annealers for sampling hope to mitigate the sampling cost. However, real physical devices will inevitably be coupled to the environment, and the strength of this coupling affects the effective temperature of the distributions from which a quantum annealer samples. To counteract this problem, error correction schemes that can effectively reduce the temperature are needed if there is to be some benefit in using quantum annealing for problems at a larger scale, where we might expect the effective temperature of the device to not be sufficiently low. To this end, we have applied nested quantum annealing correction (NQAC) to do unsupervised learning with a small bars and stripes dataset, and to do supervised learning with a coarse-grained MNIST dataset. For both datasets we demonstrate improved training and a concomitant effective temperature reduction at higher noise levels relative to the unencoded case. We also find better performance overall with longer anneal times and offer an interpretation of the results based on a comparison to simulated quantum annealing and spin vector Monte Carlo. A counterintuitive aspect of our results is that the output distribution generally becomes less Gibbs-like with increasing nesting level and increasing anneal times, which shows that improved training performance can be achieved without equilibration to the target Gibbs distribution." @default.
- W3100873882 created "2020-11-23" @default.
- W3100873882 creator A5012472937 @default.
- W3100873882 creator A5058701148 @default.
- W3100873882 creator A5083283029 @default.
- W3100873882 date "2020-08-18" @default.
- W3100873882 modified "2023-10-18" @default.
- W3100873882 title "Limitations of error corrected quantum annealing in improving the performance of Boltzmann machines" @default.
- W3100873882 cites W1488590474 @default.
- W3100873882 cites W1622560834 @default.
- W3100873882 cites W1809865957 @default.
- W3100873882 cites W1891334862 @default.
- W3100873882 cites W1898574993 @default.
- W3100873882 cites W1904238065 @default.
- W3100873882 cites W1943894338 @default.
- W3100873882 cites W1967538008 @default.
- W3100873882 cites W1978866421 @default.
- W3100873882 cites W1980289135 @default.
- W3100873882 cites W1983624953 @default.
- W3100873882 cites W1988801946 @default.
- W3100873882 cites W2003431413 @default.
- W3100873882 cites W2007473024 @default.
- W3100873882 cites W2020688414 @default.
- W3100873882 cites W2024860775 @default.
- W3100873882 cites W2028918948 @default.
- W3100873882 cites W2032558547 @default.
- W3100873882 cites W2048607314 @default.
- W3100873882 cites W2054814877 @default.
- W3100873882 cites W2066297895 @default.
- W3100873882 cites W2071709160 @default.
- W3100873882 cites W2105223366 @default.
- W3100873882 cites W2112796928 @default.
- W3100873882 cites W2116064496 @default.
- W3100873882 cites W2136922672 @default.
- W3100873882 cites W2167970331 @default.
- W3100873882 cites W2241551702 @default.
- W3100873882 cites W2253909748 @default.
- W3100873882 cites W2424766119 @default.
- W3100873882 cites W2498774009 @default.
- W3100873882 cites W2564229214 @default.
- W3100873882 cites W2564705082 @default.
- W3100873882 cites W2592625771 @default.
- W3100873882 cites W2748383444 @default.
- W3100873882 cites W2752623698 @default.
- W3100873882 cites W2765216848 @default.
- W3100873882 cites W2792209581 @default.
- W3100873882 cites W2940951270 @default.
- W3100873882 cites W2990398346 @default.
- W3100873882 cites W2997591727 @default.
- W3100873882 cites W3098146626 @default.
- W3100873882 cites W3098635618 @default.
- W3100873882 cites W3098768946 @default.
- W3100873882 cites W3099902156 @default.
- W3100873882 cites W3100274448 @default.
- W3100873882 cites W3100989088 @default.
- W3100873882 cites W3101676105 @default.
- W3100873882 cites W3102097462 @default.
- W3100873882 cites W3102200413 @default.
- W3100873882 cites W3103169934 @default.
- W3100873882 cites W3103574448 @default.
- W3100873882 cites W3104708747 @default.
- W3100873882 cites W3106026819 @default.
- W3100873882 cites W3106197284 @default.
- W3100873882 cites W3124368734 @default.
- W3100873882 doi "https://doi.org/10.1088/2058-9565/ab9aab" @default.
- W3100873882 hasPublicationYear "2020" @default.
- W3100873882 type Work @default.
- W3100873882 sameAs 3100873882 @default.
- W3100873882 citedByCount "21" @default.
- W3100873882 countsByYear W31008738822020 @default.
- W3100873882 countsByYear W31008738822021 @default.
- W3100873882 countsByYear W31008738822022 @default.
- W3100873882 countsByYear W31008738822023 @default.
- W3100873882 crossrefType "journal-article" @default.
- W3100873882 hasAuthorship W3100873882A5012472937 @default.
- W3100873882 hasAuthorship W3100873882A5058701148 @default.
- W3100873882 hasAuthorship W3100873882A5083283029 @default.
- W3100873882 hasBestOaLocation W31008738822 @default.
- W3100873882 hasConcept C105795698 @default.
- W3100873882 hasConcept C108583219 @default.
- W3100873882 hasConcept C11413529 @default.
- W3100873882 hasConcept C119857082 @default.
- W3100873882 hasConcept C121332964 @default.
- W3100873882 hasConcept C121864883 @default.
- W3100873882 hasConcept C126980161 @default.
- W3100873882 hasConcept C154945302 @default.
- W3100873882 hasConcept C190502265 @default.
- W3100873882 hasConcept C192576344 @default.
- W3100873882 hasConcept C19499675 @default.
- W3100873882 hasConcept C199354608 @default.
- W3100873882 hasConcept C33923547 @default.
- W3100873882 hasConcept C41008148 @default.
- W3100873882 hasConcept C52740198 @default.
- W3100873882 hasConcept C58053490 @default.
- W3100873882 hasConcept C62520636 @default.
- W3100873882 hasConcept C84114770 @default.
- W3100873882 hasConcept C90408235 @default.
- W3100873882 hasConceptScore W3100873882C105795698 @default.