Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100890305> ?p ?o ?g. }
- W3100890305 endingPage "23" @default.
- W3100890305 startingPage "12" @default.
- W3100890305 abstract "Abstract Diabetes is an ailment in which glucose level increase in at high rates in blood due to body’s inability to metabolize it. This happens when body does not produce sufficient amount of insulin or it does not respond to it properly. Critical and long-term health issues arise if diabetes is not handled or properly treated which includes: heart problems, disorders of the lungs, skin and liver complications, nerve damage, etc. With increasing number of diabetic patients, its early detection becomes essential. In this paper, our major focus areas are data mining and fuzzy logic techniques used in diabetes diagnosis. Data mining is used for locating patterns in huge datasets using a composition of different methods of machine learning, database manipulations and statistics. Data mining offers a lot of methods to inspect large data considering the expected outcome to find the hidden knowledge. Fuzzy logic is similar to human reasoning system and hence it can handle the uncertainties found in the data of medical diagnosis. These systems are called expert systems. The fuzzy expert systems (FES) analyze the knowledge from the available data which might be vague and suggests linguistic concept with huge approximation as its core to medical texts. In this paper, the methodology section delivers the pipeline of various tasks such as selecting the dataset, preprocessing the data by applying numerous methods such as standardization, normalization etc. After that, feature extraction technique is implemented on the dataset for improving the accuracy and finally dataset worked on data mining and fuzzy logic various classification algorithms. While analyzing different data mining methods, the accuracy computed through random forest classifiers as high as 99.7% and in case of numerous fuzzy logic approaches, high precision and low complexity was found to contribute a fairly high accuracy of 96%." @default.
- W3100890305 created "2020-11-23" @default.
- W3100890305 creator A5043734583 @default.
- W3100890305 creator A5043817840 @default.
- W3100890305 creator A5052019666 @default.
- W3100890305 creator A5091192993 @default.
- W3100890305 date "2021-01-01" @default.
- W3100890305 modified "2023-10-13" @default.
- W3100890305 title "Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis" @default.
- W3100890305 cites W10130694 @default.
- W3100890305 cites W1174996235 @default.
- W3100890305 cites W1967689665 @default.
- W3100890305 cites W1982934478 @default.
- W3100890305 cites W1983405239 @default.
- W3100890305 cites W1989022033 @default.
- W3100890305 cites W1998885258 @default.
- W3100890305 cites W2016462462 @default.
- W3100890305 cites W2016979930 @default.
- W3100890305 cites W2018495107 @default.
- W3100890305 cites W2026841079 @default.
- W3100890305 cites W2031659228 @default.
- W3100890305 cites W2045262022 @default.
- W3100890305 cites W2050520607 @default.
- W3100890305 cites W2067580698 @default.
- W3100890305 cites W2076134358 @default.
- W3100890305 cites W2077863624 @default.
- W3100890305 cites W2078855524 @default.
- W3100890305 cites W2082152047 @default.
- W3100890305 cites W2083843631 @default.
- W3100890305 cites W2093836791 @default.
- W3100890305 cites W2102474832 @default.
- W3100890305 cites W2126029446 @default.
- W3100890305 cites W2139897147 @default.
- W3100890305 cites W2143308179 @default.
- W3100890305 cites W2146080612 @default.
- W3100890305 cites W2153166477 @default.
- W3100890305 cites W2331881048 @default.
- W3100890305 cites W2462118437 @default.
- W3100890305 cites W2582394828 @default.
- W3100890305 cites W2591431969 @default.
- W3100890305 cites W2766261008 @default.
- W3100890305 cites W2771827368 @default.
- W3100890305 cites W2794322961 @default.
- W3100890305 cites W2802899394 @default.
- W3100890305 cites W2871146802 @default.
- W3100890305 cites W2893984293 @default.
- W3100890305 cites W2903690450 @default.
- W3100890305 cites W2943348420 @default.
- W3100890305 cites W2946682339 @default.
- W3100890305 cites W2950944546 @default.
- W3100890305 cites W2954368032 @default.
- W3100890305 cites W2963921722 @default.
- W3100890305 cites W2971117641 @default.
- W3100890305 cites W2980854667 @default.
- W3100890305 cites W3022568704 @default.
- W3100890305 cites W4232331507 @default.
- W3100890305 cites W4251711650 @default.
- W3100890305 cites W4256235178 @default.
- W3100890305 cites W4290041864 @default.
- W3100890305 doi "https://doi.org/10.1016/j.ceh.2020.11.001" @default.
- W3100890305 hasPublicationYear "2021" @default.
- W3100890305 type Work @default.
- W3100890305 sameAs 3100890305 @default.
- W3100890305 citedByCount "38" @default.
- W3100890305 countsByYear W31008903052020 @default.
- W3100890305 countsByYear W31008903052021 @default.
- W3100890305 countsByYear W31008903052022 @default.
- W3100890305 countsByYear W31008903052023 @default.
- W3100890305 crossrefType "journal-article" @default.
- W3100890305 hasAuthorship W3100890305A5043734583 @default.
- W3100890305 hasAuthorship W3100890305A5043817840 @default.
- W3100890305 hasAuthorship W3100890305A5052019666 @default.
- W3100890305 hasAuthorship W3100890305A5091192993 @default.
- W3100890305 hasBestOaLocation W31008903051 @default.
- W3100890305 hasConcept C119857082 @default.
- W3100890305 hasConcept C124101348 @default.
- W3100890305 hasConcept C134018914 @default.
- W3100890305 hasConcept C154945302 @default.
- W3100890305 hasConcept C41008148 @default.
- W3100890305 hasConcept C555293320 @default.
- W3100890305 hasConcept C58166 @default.
- W3100890305 hasConcept C71924100 @default.
- W3100890305 hasConceptScore W3100890305C119857082 @default.
- W3100890305 hasConceptScore W3100890305C124101348 @default.
- W3100890305 hasConceptScore W3100890305C134018914 @default.
- W3100890305 hasConceptScore W3100890305C154945302 @default.
- W3100890305 hasConceptScore W3100890305C41008148 @default.
- W3100890305 hasConceptScore W3100890305C555293320 @default.
- W3100890305 hasConceptScore W3100890305C58166 @default.
- W3100890305 hasConceptScore W3100890305C71924100 @default.
- W3100890305 hasLocation W31008903051 @default.
- W3100890305 hasLocation W31008903052 @default.
- W3100890305 hasOpenAccess W3100890305 @default.
- W3100890305 hasPrimaryLocation W31008903051 @default.
- W3100890305 hasRelatedWork W1563850031 @default.
- W3100890305 hasRelatedWork W2032287785 @default.
- W3100890305 hasRelatedWork W2094113608 @default.
- W3100890305 hasRelatedWork W2233866314 @default.