Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100892116> ?p ?o ?g. }
- W3100892116 abstract "Fringe projection profilometry (FPP) is one of the most popular three-dimensional (3D) shape measurement techniques, and has becoming more prevalently adopted in intelligent manufacturing, defect detection and some other important applications. In FPP, how to efficiently recover the absolute phase has always been a great challenge. The stereo phase unwrapping (SPU) technologies based on geometric constraints can eliminate phase ambiguity without projecting any additional fringe patterns, which maximizes the efficiency of the retrieval of absolute phase. Inspired by the recent success of deep learning technologies for phase analysis, we demonstrate that deep learning can be an effective tool that organically unifies the phase retrieval, geometric constraints, and phase unwrapping steps into a comprehensive framework. Driven by extensive training dataset, the neutral network can gradually learn how to transfer one high-frequency fringe pattern into the physically meaningful, and most likely absolute phase, instead of step by step as in convention approaches. Based on the properly trained framework, high-quality phase retrieval and robust phase ambiguity removal can be achieved based on only single-frame projection. Experimental results demonstrate that compared with traditional SPU, our method can more efficiently and stably unwrap the phase of dense fringe images in a larger measurement volume with fewer camera views. Limitations about the proposed approach are also discussed. We believe the proposed approach represents an important step forward in high-speed, high-accuracy, motion-artifacts-free absolute 3D shape measurement for complicated object from a single fringe pattern." @default.
- W3100892116 created "2020-11-23" @default.
- W3100892116 creator A5001864512 @default.
- W3100892116 creator A5006191558 @default.
- W3100892116 creator A5061719118 @default.
- W3100892116 creator A5068105201 @default.
- W3100892116 creator A5068290128 @default.
- W3100892116 creator A5078018786 @default.
- W3100892116 creator A5080935585 @default.
- W3100892116 date "2020-04-01" @default.
- W3100892116 modified "2023-10-15" @default.
- W3100892116 title "Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement" @default.
- W3100892116 cites W1978178564 @default.
- W3100892116 cites W1980081806 @default.
- W3100892116 cites W1987581202 @default.
- W3100892116 cites W1990613440 @default.
- W3100892116 cites W2007018426 @default.
- W3100892116 cites W2011070003 @default.
- W3100892116 cites W2034577697 @default.
- W3100892116 cites W2047687158 @default.
- W3100892116 cites W2068069165 @default.
- W3100892116 cites W2089549147 @default.
- W3100892116 cites W2103063270 @default.
- W3100892116 cites W2127996129 @default.
- W3100892116 cites W2130952765 @default.
- W3100892116 cites W2345939069 @default.
- W3100892116 cites W2505895835 @default.
- W3100892116 cites W2510651995 @default.
- W3100892116 cites W2617922719 @default.
- W3100892116 cites W2725771727 @default.
- W3100892116 cites W2773247819 @default.
- W3100892116 cites W2778531572 @default.
- W3100892116 cites W2804654620 @default.
- W3100892116 cites W2886535361 @default.
- W3100892116 cites W2892786419 @default.
- W3100892116 cites W2906697754 @default.
- W3100892116 cites W2914768305 @default.
- W3100892116 cites W2945943327 @default.
- W3100892116 cites W2948097639 @default.
- W3100892116 cites W2990761542 @default.
- W3100892116 cites W2997457044 @default.
- W3100892116 cites W3101025873 @default.
- W3100892116 cites W4251240706 @default.
- W3100892116 doi "https://doi.org/10.1063/5.0003217" @default.
- W3100892116 hasPublicationYear "2020" @default.
- W3100892116 type Work @default.
- W3100892116 sameAs 3100892116 @default.
- W3100892116 citedByCount "123" @default.
- W3100892116 countsByYear W31008921162020 @default.
- W3100892116 countsByYear W31008921162021 @default.
- W3100892116 countsByYear W31008921162022 @default.
- W3100892116 countsByYear W31008921162023 @default.
- W3100892116 crossrefType "journal-article" @default.
- W3100892116 hasAuthorship W3100892116A5001864512 @default.
- W3100892116 hasAuthorship W3100892116A5006191558 @default.
- W3100892116 hasAuthorship W3100892116A5061719118 @default.
- W3100892116 hasAuthorship W3100892116A5068105201 @default.
- W3100892116 hasAuthorship W3100892116A5068290128 @default.
- W3100892116 hasAuthorship W3100892116A5078018786 @default.
- W3100892116 hasAuthorship W3100892116A5080935585 @default.
- W3100892116 hasBestOaLocation W31008921161 @default.
- W3100892116 hasConcept C102519508 @default.
- W3100892116 hasConcept C108583219 @default.
- W3100892116 hasConcept C11413529 @default.
- W3100892116 hasConcept C127413603 @default.
- W3100892116 hasConcept C134306372 @default.
- W3100892116 hasConcept C154945302 @default.
- W3100892116 hasConcept C178790620 @default.
- W3100892116 hasConcept C184577583 @default.
- W3100892116 hasConcept C185592680 @default.
- W3100892116 hasConcept C199360897 @default.
- W3100892116 hasConcept C2776521118 @default.
- W3100892116 hasConcept C2779751349 @default.
- W3100892116 hasConcept C2780522230 @default.
- W3100892116 hasConcept C2992734406 @default.
- W3100892116 hasConcept C31972630 @default.
- W3100892116 hasConcept C33923547 @default.
- W3100892116 hasConcept C41008148 @default.
- W3100892116 hasConcept C44280652 @default.
- W3100892116 hasConcept C57493831 @default.
- W3100892116 hasConcept C78519656 @default.
- W3100892116 hasConcept C81793267 @default.
- W3100892116 hasConceptScore W3100892116C102519508 @default.
- W3100892116 hasConceptScore W3100892116C108583219 @default.
- W3100892116 hasConceptScore W3100892116C11413529 @default.
- W3100892116 hasConceptScore W3100892116C127413603 @default.
- W3100892116 hasConceptScore W3100892116C134306372 @default.
- W3100892116 hasConceptScore W3100892116C154945302 @default.
- W3100892116 hasConceptScore W3100892116C178790620 @default.
- W3100892116 hasConceptScore W3100892116C184577583 @default.
- W3100892116 hasConceptScore W3100892116C185592680 @default.
- W3100892116 hasConceptScore W3100892116C199360897 @default.
- W3100892116 hasConceptScore W3100892116C2776521118 @default.
- W3100892116 hasConceptScore W3100892116C2779751349 @default.
- W3100892116 hasConceptScore W3100892116C2780522230 @default.
- W3100892116 hasConceptScore W3100892116C2992734406 @default.
- W3100892116 hasConceptScore W3100892116C31972630 @default.
- W3100892116 hasConceptScore W3100892116C33923547 @default.
- W3100892116 hasConceptScore W3100892116C41008148 @default.
- W3100892116 hasConceptScore W3100892116C44280652 @default.