Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100892511> ?p ?o ?g. }
- W3100892511 endingPage "4926" @default.
- W3100892511 startingPage "4911" @default.
- W3100892511 abstract "With the development of deep learning, many state-of-the-art natural image scene classification methods have demonstrated impressive performance. While the current convolution neural network tends to extract global features and global semantic information in a scene, the geo-spatial objects can be located at anywhere in an aerial image scene and their spatial arrangement tends to be more complicated. One possible solution is to preserve more local semantic information and enhance feature propagation. In this paper, an end to end multiple instance dense connected convolution neural network (MIDCCNN) is proposed for aerial image scene classification. First, a 23 layer dense connected convolution neural network (DCCNN) is built and served as a backbone to extract convolution features. It is capable of preserving middle and low level convolution features. Then, an attention based multiple instance pooling is proposed to highlight the local semantics in an aerial image scene. Finally, we minimize the loss between the bag-level predictions and the ground truth labels so that the whole framework can be trained directly. Experiments on three aerial image datasets demonstrate that our proposed methods can outperform current baselines by a large margin." @default.
- W3100892511 created "2020-11-23" @default.
- W3100892511 creator A5011406776 @default.
- W3100892511 creator A5017100729 @default.
- W3100892511 creator A5035415308 @default.
- W3100892511 creator A5050852420 @default.
- W3100892511 creator A5073032922 @default.
- W3100892511 creator A5076970762 @default.
- W3100892511 date "2020-01-01" @default.
- W3100892511 modified "2023-10-16" @default.
- W3100892511 title "A Multiple-Instance Densely-Connected ConvNet for Aerial Scene Classification" @default.
- W3100892511 cites W1157380099 @default.
- W3100892511 cites W1526295910 @default.
- W3100892511 cites W1912954554 @default.
- W3100892511 cites W1945608308 @default.
- W3100892511 cites W1968591910 @default.
- W3100892511 cites W1976977741 @default.
- W3100892511 cites W1988805924 @default.
- W3100892511 cites W1989316905 @default.
- W3100892511 cites W1991385629 @default.
- W3100892511 cites W2010632104 @default.
- W3100892511 cites W2011287807 @default.
- W3100892511 cites W2017448754 @default.
- W3100892511 cites W2040648426 @default.
- W3100892511 cites W2063587308 @default.
- W3100892511 cites W2069143585 @default.
- W3100892511 cites W2083358477 @default.
- W3100892511 cites W2098676252 @default.
- W3100892511 cites W2109326754 @default.
- W3100892511 cites W2110119381 @default.
- W3100892511 cites W2120782420 @default.
- W3100892511 cites W2134731454 @default.
- W3100892511 cites W2141362318 @default.
- W3100892511 cites W2143539877 @default.
- W3100892511 cites W2149648623 @default.
- W3100892511 cites W2151103935 @default.
- W3100892511 cites W2152161678 @default.
- W3100892511 cites W2163352848 @default.
- W3100892511 cites W2253590344 @default.
- W3100892511 cites W2294802479 @default.
- W3100892511 cites W2358876993 @default.
- W3100892511 cites W2531897166 @default.
- W3100892511 cites W2550553598 @default.
- W3100892511 cites W2558732717 @default.
- W3100892511 cites W2563764042 @default.
- W3100892511 cites W2567675128 @default.
- W3100892511 cites W2592165076 @default.
- W3100892511 cites W2617536493 @default.
- W3100892511 cites W2620958690 @default.
- W3100892511 cites W2621526417 @default.
- W3100892511 cites W2727875856 @default.
- W3100892511 cites W2746325398 @default.
- W3100892511 cites W2752782242 @default.
- W3100892511 cites W2769613401 @default.
- W3100892511 cites W2782522152 @default.
- W3100892511 cites W2783165089 @default.
- W3100892511 cites W2796256498 @default.
- W3100892511 cites W2883589384 @default.
- W3100892511 cites W2895929517 @default.
- W3100892511 cites W2914885528 @default.
- W3100892511 cites W2962749812 @default.
- W3100892511 cites W2963446712 @default.
- W3100892511 cites W2963993763 @default.
- W3100892511 cites W2964275459 @default.
- W3100892511 cites W2964979676 @default.
- W3100892511 cites W2971339586 @default.
- W3100892511 cites W3103856189 @default.
- W3100892511 cites W3104282073 @default.
- W3100892511 cites W3105577662 @default.
- W3100892511 cites W3106105822 @default.
- W3100892511 doi "https://doi.org/10.1109/tip.2020.2975718" @default.
- W3100892511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32149687" @default.
- W3100892511 hasPublicationYear "2020" @default.
- W3100892511 type Work @default.
- W3100892511 sameAs 3100892511 @default.
- W3100892511 citedByCount "78" @default.
- W3100892511 countsByYear W31008925112020 @default.
- W3100892511 countsByYear W31008925112021 @default.
- W3100892511 countsByYear W31008925112022 @default.
- W3100892511 countsByYear W31008925112023 @default.
- W3100892511 crossrefType "journal-article" @default.
- W3100892511 hasAuthorship W3100892511A5011406776 @default.
- W3100892511 hasAuthorship W3100892511A5017100729 @default.
- W3100892511 hasAuthorship W3100892511A5035415308 @default.
- W3100892511 hasAuthorship W3100892511A5050852420 @default.
- W3100892511 hasAuthorship W3100892511A5073032922 @default.
- W3100892511 hasAuthorship W3100892511A5076970762 @default.
- W3100892511 hasBestOaLocation W31008925112 @default.
- W3100892511 hasConcept C115961682 @default.
- W3100892511 hasConcept C119857082 @default.
- W3100892511 hasConcept C138885662 @default.
- W3100892511 hasConcept C146849305 @default.
- W3100892511 hasConcept C153180895 @default.
- W3100892511 hasConcept C154945302 @default.
- W3100892511 hasConcept C184337299 @default.
- W3100892511 hasConcept C199360897 @default.
- W3100892511 hasConcept C2776401178 @default.
- W3100892511 hasConcept C2776429412 @default.