Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100894039> ?p ?o ?g. }
- W3100894039 endingPage "215622" @default.
- W3100894039 startingPage "215613" @default.
- W3100894039 abstract "Relation extraction is a necessary step in obtaining information from clinical medical records. In the medical domain, there have been several studies on relation extraction in modern medicine clinical notes written in English. However, very limited relation extraction research has been conducted on clinical notes written in Chinese, especially traditional Chinese medicine (TCM) clinical records (e.g., herb-symptom, herb-disease). Instead of independently extracting each relation from a single sentence or text, we propose to globally and reasonably extract multiple types of relations from the Chines clinical records with a novel heterogeneous graph representation learning method. Specifically, we first construct multiple view medical entity graphs based on the co-occurring relations, knowledge obtained from the clinic, and domain texts with the corresponding information of two medical entities from the Chinese clinical records, in which each edge is a candidate relation; we then build a Graph Convolutional Network (GCN)-based representation learning with the attention mechanism to simultaneously infer the existence of all the edges via classification. The experimental data were obtained from the Chinese medical records and literature provided by previous work. The main experimental results on Chinese clinical records show that our proposed model’s precision, recall, and F1-score reach 10.2%, 13.5%, 12.6%, demonstrating significant improvements over state-of-the-art." @default.
- W3100894039 created "2020-11-23" @default.
- W3100894039 creator A5037164369 @default.
- W3100894039 creator A5039364205 @default.
- W3100894039 creator A5039560134 @default.
- W3100894039 creator A5057617281 @default.
- W3100894039 creator A5079410323 @default.
- W3100894039 date "2020-01-01" @default.
- W3100894039 modified "2023-10-02" @default.
- W3100894039 title "Relation Extraction for Chinese Clinical Records Using Multi-View Graph Learning" @default.
- W3100894039 cites W1005454186 @default.
- W3100894039 cites W1978673975 @default.
- W3100894039 cites W1984340934 @default.
- W3100894039 cites W2013355692 @default.
- W3100894039 cites W2066089687 @default.
- W3100894039 cites W2123112337 @default.
- W3100894039 cites W2129367118 @default.
- W3100894039 cites W2250332520 @default.
- W3100894039 cites W2594627864 @default.
- W3100894039 cites W2625625371 @default.
- W3100894039 cites W2759136286 @default.
- W3100894039 cites W2782374321 @default.
- W3100894039 cites W2890458175 @default.
- W3100894039 cites W2911286998 @default.
- W3100894039 cites W2938409691 @default.
- W3100894039 cites W2948035163 @default.
- W3100894039 cites W2963919031 @default.
- W3100894039 cites W2965363157 @default.
- W3100894039 cites W2970398671 @default.
- W3100894039 cites W2971220558 @default.
- W3100894039 cites W3004507689 @default.
- W3100894039 cites W3028004046 @default.
- W3100894039 cites W3028060370 @default.
- W3100894039 cites W3032163490 @default.
- W3100894039 cites W3045744254 @default.
- W3100894039 cites W3080691086 @default.
- W3100894039 doi "https://doi.org/10.1109/access.2020.3037086" @default.
- W3100894039 hasPublicationYear "2020" @default.
- W3100894039 type Work @default.
- W3100894039 sameAs 3100894039 @default.
- W3100894039 citedByCount "7" @default.
- W3100894039 countsByYear W31008940392021 @default.
- W3100894039 countsByYear W31008940392022 @default.
- W3100894039 countsByYear W31008940392023 @default.
- W3100894039 crossrefType "journal-article" @default.
- W3100894039 hasAuthorship W3100894039A5037164369 @default.
- W3100894039 hasAuthorship W3100894039A5039364205 @default.
- W3100894039 hasAuthorship W3100894039A5039560134 @default.
- W3100894039 hasAuthorship W3100894039A5057617281 @default.
- W3100894039 hasAuthorship W3100894039A5079410323 @default.
- W3100894039 hasBestOaLocation W31008940391 @default.
- W3100894039 hasConcept C124101348 @default.
- W3100894039 hasConcept C126838900 @default.
- W3100894039 hasConcept C132525143 @default.
- W3100894039 hasConcept C153604712 @default.
- W3100894039 hasConcept C154945302 @default.
- W3100894039 hasConcept C195807954 @default.
- W3100894039 hasConcept C195910791 @default.
- W3100894039 hasConcept C204321447 @default.
- W3100894039 hasConcept C23123220 @default.
- W3100894039 hasConcept C25343380 @default.
- W3100894039 hasConcept C2777530160 @default.
- W3100894039 hasConcept C41008148 @default.
- W3100894039 hasConcept C71924100 @default.
- W3100894039 hasConcept C80444323 @default.
- W3100894039 hasConcept C81363708 @default.
- W3100894039 hasConceptScore W3100894039C124101348 @default.
- W3100894039 hasConceptScore W3100894039C126838900 @default.
- W3100894039 hasConceptScore W3100894039C132525143 @default.
- W3100894039 hasConceptScore W3100894039C153604712 @default.
- W3100894039 hasConceptScore W3100894039C154945302 @default.
- W3100894039 hasConceptScore W3100894039C195807954 @default.
- W3100894039 hasConceptScore W3100894039C195910791 @default.
- W3100894039 hasConceptScore W3100894039C204321447 @default.
- W3100894039 hasConceptScore W3100894039C23123220 @default.
- W3100894039 hasConceptScore W3100894039C25343380 @default.
- W3100894039 hasConceptScore W3100894039C2777530160 @default.
- W3100894039 hasConceptScore W3100894039C41008148 @default.
- W3100894039 hasConceptScore W3100894039C71924100 @default.
- W3100894039 hasConceptScore W3100894039C80444323 @default.
- W3100894039 hasConceptScore W3100894039C81363708 @default.
- W3100894039 hasFunder F4320321001 @default.
- W3100894039 hasFunder F4320328346 @default.
- W3100894039 hasLocation W31008940391 @default.
- W3100894039 hasOpenAccess W3100894039 @default.
- W3100894039 hasPrimaryLocation W31008940391 @default.
- W3100894039 hasRelatedWork W102721276 @default.
- W3100894039 hasRelatedWork W110692952 @default.
- W3100894039 hasRelatedWork W159132833 @default.
- W3100894039 hasRelatedWork W2444550338 @default.
- W3100894039 hasRelatedWork W2605526599 @default.
- W3100894039 hasRelatedWork W3138801416 @default.
- W3100894039 hasRelatedWork W3185518029 @default.
- W3100894039 hasRelatedWork W3213236677 @default.
- W3100894039 hasRelatedWork W4299912061 @default.
- W3100894039 hasRelatedWork W4319940250 @default.
- W3100894039 hasVolume "8" @default.
- W3100894039 isParatext "false" @default.