Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100921437> ?p ?o ?g. }
- W3100921437 endingPage "A53" @default.
- W3100921437 startingPage "A53" @default.
- W3100921437 abstract "Aims. Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increase. This is especially true for the NASA TESS mission which generates thousands of new candidates each month. Here we created the first deep-learning model capable of classifying TESS planet candidates. Methods. We adapted an existing neural network model and then trained and tested this updated model on four sectors of high-fidelity, pixel-level TESS simulations data created using the Lilith simulator and processed using the full TESS pipeline. With the caveat that direct transfer of the model to real data will not perform as accurately, we also applied this model to four sectors of TESS candidates. Results. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the two-class model. This accuracy is also boosted by another ~4% if planets found at the wrong periods are included. We also performed three-class and four-class classification of planets, blended and target eclipsing binaries, and non-astrophysical false positives, which have slightly lower average precision and planet accuracies but are useful for follow-up decisions. When applied to real TESS data, 61% of threshold crossing events (TCEs) coincident with currently published TESS objects of interest are recovered as planets, 4% more are suggested to be eclipsing binaries, and we propose a further 200 TCEs as planet candidates." @default.
- W3100921437 created "2020-11-23" @default.
- W3100921437 creator A5003125052 @default.
- W3100921437 creator A5008522406 @default.
- W3100921437 creator A5018637330 @default.
- W3100921437 creator A5031333688 @default.
- W3100921437 creator A5042849887 @default.
- W3100921437 creator A5055089022 @default.
- W3100921437 creator A5063025899 @default.
- W3100921437 creator A5066869710 @default.
- W3100921437 creator A5068127095 @default.
- W3100921437 date "2020-01-01" @default.
- W3100921437 modified "2023-10-17" @default.
- W3100921437 title "Rapid classification of TESS planet candidates with convolutional neural networks" @default.
- W3100921437 cites W1534477342 @default.
- W3100921437 cites W1942108275 @default.
- W3100921437 cites W1971049448 @default.
- W3100921437 cites W2011301426 @default.
- W3100921437 cites W2053724458 @default.
- W3100921437 cites W2135625048 @default.
- W3100921437 cites W2147407860 @default.
- W3100921437 cites W2240910935 @default.
- W3100921437 cites W2261150804 @default.
- W3100921437 cites W2465742975 @default.
- W3100921437 cites W2499105366 @default.
- W3100921437 cites W2749229678 @default.
- W3100921437 cites W2767693152 @default.
- W3100921437 cites W2794856613 @default.
- W3100921437 cites W2797410608 @default.
- W3100921437 cites W2891724451 @default.
- W3100921437 cites W2901217044 @default.
- W3100921437 cites W2901290529 @default.
- W3100921437 cites W2947592794 @default.
- W3100921437 cites W2951599786 @default.
- W3100921437 cites W3098166093 @default.
- W3100921437 cites W3098213975 @default.
- W3100921437 cites W3099142679 @default.
- W3100921437 cites W3101140082 @default.
- W3100921437 cites W3101975421 @default.
- W3100921437 cites W3103925856 @default.
- W3100921437 cites W3103939122 @default.
- W3100921437 cites W3104109275 @default.
- W3100921437 cites W3104157621 @default.
- W3100921437 cites W3105353888 @default.
- W3100921437 cites W3125892765 @default.
- W3100921437 cites W4231351050 @default.
- W3100921437 doi "https://doi.org/10.1051/0004-6361/201935345" @default.
- W3100921437 hasPublicationYear "2020" @default.
- W3100921437 type Work @default.
- W3100921437 sameAs 3100921437 @default.
- W3100921437 citedByCount "30" @default.
- W3100921437 countsByYear W31009214372019 @default.
- W3100921437 countsByYear W31009214372020 @default.
- W3100921437 countsByYear W31009214372021 @default.
- W3100921437 countsByYear W31009214372022 @default.
- W3100921437 countsByYear W31009214372023 @default.
- W3100921437 crossrefType "journal-article" @default.
- W3100921437 hasAuthorship W3100921437A5003125052 @default.
- W3100921437 hasAuthorship W3100921437A5008522406 @default.
- W3100921437 hasAuthorship W3100921437A5018637330 @default.
- W3100921437 hasAuthorship W3100921437A5031333688 @default.
- W3100921437 hasAuthorship W3100921437A5042849887 @default.
- W3100921437 hasAuthorship W3100921437A5055089022 @default.
- W3100921437 hasAuthorship W3100921437A5063025899 @default.
- W3100921437 hasAuthorship W3100921437A5066869710 @default.
- W3100921437 hasAuthorship W3100921437A5068127095 @default.
- W3100921437 hasBestOaLocation W31009214371 @default.
- W3100921437 hasConcept C121332964 @default.
- W3100921437 hasConcept C1276947 @default.
- W3100921437 hasConcept C154945302 @default.
- W3100921437 hasConcept C163479331 @default.
- W3100921437 hasConcept C17744445 @default.
- W3100921437 hasConcept C199360897 @default.
- W3100921437 hasConcept C199539241 @default.
- W3100921437 hasConcept C207963374 @default.
- W3100921437 hasConcept C2777212361 @default.
- W3100921437 hasConcept C2778022998 @default.
- W3100921437 hasConcept C41008148 @default.
- W3100921437 hasConcept C43521106 @default.
- W3100921437 hasConcept C50644808 @default.
- W3100921437 hasConcept C51244244 @default.
- W3100921437 hasConcept C539828613 @default.
- W3100921437 hasConcept C81363708 @default.
- W3100921437 hasConceptScore W3100921437C121332964 @default.
- W3100921437 hasConceptScore W3100921437C1276947 @default.
- W3100921437 hasConceptScore W3100921437C154945302 @default.
- W3100921437 hasConceptScore W3100921437C163479331 @default.
- W3100921437 hasConceptScore W3100921437C17744445 @default.
- W3100921437 hasConceptScore W3100921437C199360897 @default.
- W3100921437 hasConceptScore W3100921437C199539241 @default.
- W3100921437 hasConceptScore W3100921437C207963374 @default.
- W3100921437 hasConceptScore W3100921437C2777212361 @default.
- W3100921437 hasConceptScore W3100921437C2778022998 @default.
- W3100921437 hasConceptScore W3100921437C41008148 @default.
- W3100921437 hasConceptScore W3100921437C43521106 @default.
- W3100921437 hasConceptScore W3100921437C50644808 @default.
- W3100921437 hasConceptScore W3100921437C51244244 @default.
- W3100921437 hasConceptScore W3100921437C539828613 @default.