Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100922884> ?p ?o ?g. }
- W3100922884 abstract "This paper describes an “all-in-one” solution for the real-time recognition of users' mental workloads in virtual reality through the customization of a commercial HMD with physiological sensors. First, we describe the hardware and software solution employed to build the system. Second, we detail the machine learning methods used for the automatic recognition of the users' mental workload, which are based on the well-known Random Forest algorithm. In order to gather data to train the system, we conducted an extensive user study with 75 participants using a VR flight simulator to induce different levels of mental workload. In contrast to previous works which label the data based on a standardized task (e.g., n-back task) or on a pre-defined task-difficulty, participants were asked about their perceived mental workload level along the experiment. With the data collected, we were able to train the system in order to classify four different levels of mental workload with an accuracy up to 65%. In addition, we discuss the role of the signal normalization procedures, the contribution of the different physiological signals on the recognition accuracy and compare the results obtained with the sensors embedded in the HMD with commercial grade systems. Preliminary results show our pipeline is able to recognize mental workload in real-time. Taken together, our results suggest that such all-in-one approach, with physiological sensors directly embedded in the HMD, is a promising path for VR applications in which the real-time or off-line estimation of Mental Workload assessment is beneficial." @default.
- W3100922884 created "2020-11-23" @default.
- W3100922884 creator A5009300052 @default.
- W3100922884 creator A5044294310 @default.
- W3100922884 creator A5047012735 @default.
- W3100922884 creator A5057100275 @default.
- W3100922884 creator A5062297032 @default.
- W3100922884 creator A5090150936 @default.
- W3100922884 date "2020-11-01" @default.
- W3100922884 modified "2023-10-04" @default.
- W3100922884 title "Towards Real-Time Recognition of Users Mental Workload Using Integrated Physiological Sensors Into a VR HMD" @default.
- W3100922884 cites W1586856071 @default.
- W3100922884 cites W1809125706 @default.
- W3100922884 cites W1980579221 @default.
- W3100922884 cites W1985283984 @default.
- W3100922884 cites W1985948545 @default.
- W3100922884 cites W1988681682 @default.
- W3100922884 cites W1994877858 @default.
- W3100922884 cites W1997544838 @default.
- W3100922884 cites W2003697795 @default.
- W3100922884 cites W2020386158 @default.
- W3100922884 cites W2021913835 @default.
- W3100922884 cites W2023324017 @default.
- W3100922884 cites W2023912726 @default.
- W3100922884 cites W2029334490 @default.
- W3100922884 cites W2047308511 @default.
- W3100922884 cites W2056762027 @default.
- W3100922884 cites W2078671978 @default.
- W3100922884 cites W2080795763 @default.
- W3100922884 cites W2111587852 @default.
- W3100922884 cites W2112273791 @default.
- W3100922884 cites W2115223110 @default.
- W3100922884 cites W2117539524 @default.
- W3100922884 cites W2120339204 @default.
- W3100922884 cites W2120945046 @default.
- W3100922884 cites W2121817902 @default.
- W3100922884 cites W2122311608 @default.
- W3100922884 cites W2139261343 @default.
- W3100922884 cites W2149354205 @default.
- W3100922884 cites W2151905266 @default.
- W3100922884 cites W2152905082 @default.
- W3100922884 cites W2162594179 @default.
- W3100922884 cites W2165412197 @default.
- W3100922884 cites W2203197981 @default.
- W3100922884 cites W2335633300 @default.
- W3100922884 cites W2466233356 @default.
- W3100922884 cites W2530555723 @default.
- W3100922884 cites W2573966230 @default.
- W3100922884 cites W2610847483 @default.
- W3100922884 cites W2615872479 @default.
- W3100922884 cites W2737790095 @default.
- W3100922884 cites W2750911561 @default.
- W3100922884 cites W2791944851 @default.
- W3100922884 cites W2795960359 @default.
- W3100922884 cites W2798479175 @default.
- W3100922884 cites W2886389672 @default.
- W3100922884 cites W2890072046 @default.
- W3100922884 cites W2890679134 @default.
- W3100922884 cites W2895272727 @default.
- W3100922884 cites W2911964244 @default.
- W3100922884 cites W2919115771 @default.
- W3100922884 cites W292671876 @default.
- W3100922884 cites W2932489395 @default.
- W3100922884 cites W2954431469 @default.
- W3100922884 cites W2963665779 @default.
- W3100922884 cites W2968382098 @default.
- W3100922884 cites W2970732016 @default.
- W3100922884 cites W2979650466 @default.
- W3100922884 cites W2981001215 @default.
- W3100922884 cites W2986017006 @default.
- W3100922884 cites W2989752455 @default.
- W3100922884 cites W2995222034 @default.
- W3100922884 cites W2999233838 @default.
- W3100922884 cites W3103145119 @default.
- W3100922884 cites W4235432271 @default.
- W3100922884 cites W4250098481 @default.
- W3100922884 cites W819921203 @default.
- W3100922884 cites W92469554 @default.
- W3100922884 doi "https://doi.org/10.1109/ismar50242.2020.00068" @default.
- W3100922884 hasPublicationYear "2020" @default.
- W3100922884 type Work @default.
- W3100922884 sameAs 3100922884 @default.
- W3100922884 citedByCount "17" @default.
- W3100922884 countsByYear W31009228842021 @default.
- W3100922884 countsByYear W31009228842022 @default.
- W3100922884 countsByYear W31009228842023 @default.
- W3100922884 crossrefType "proceedings-article" @default.
- W3100922884 hasAuthorship W3100922884A5009300052 @default.
- W3100922884 hasAuthorship W3100922884A5044294310 @default.
- W3100922884 hasAuthorship W3100922884A5047012735 @default.
- W3100922884 hasAuthorship W3100922884A5057100275 @default.
- W3100922884 hasAuthorship W3100922884A5062297032 @default.
- W3100922884 hasAuthorship W3100922884A5090150936 @default.
- W3100922884 hasBestOaLocation W31009228842 @default.
- W3100922884 hasConcept C107457646 @default.
- W3100922884 hasConcept C111919701 @default.
- W3100922884 hasConcept C127413603 @default.
- W3100922884 hasConcept C136764020 @default.
- W3100922884 hasConcept C154945302 @default.
- W3100922884 hasConcept C183003079 @default.