Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100933025> ?p ?o ?g. }
- W3100933025 endingPage "1481" @default.
- W3100933025 startingPage "1470" @default.
- W3100933025 abstract "Existing fast algorithms for bilateral and nonlocal means filtering mostly work with grayscale images. They cannot easily be extended to high-dimensional data such as color and hyperspectral images, patch-based data, and flow-fields. In this paper, we propose a fast algorithm for high-dimensional bilateral and nonlocal means filtering. Unlike existing approaches, where the focus is on approximating the data (using quantization) or the filter kernel (via analytic expansions), we locally approximate the kernel using weighted and shifted copies of a Gaussian, where the weights and shifts are inferred from the data. The algorithm emerging from the proposed approximation essentially involves clustering and fast convolutions, and is easy to implement. Moreover, a variant of our algorithm comes with a guarantee (bound) on the approximation error, which is not enjoyed by existing algorithms. We present some results for high-dimensional bilateral and nonlocal means filtering to demonstrate the speed and accuracy of our proposal. Moreover, we also show that our algorithm can outperform the state-of-the-art fast approximations in terms of accuracy and timing." @default.
- W3100933025 created "2020-11-23" @default.
- W3100933025 creator A5016917414 @default.
- W3100933025 creator A5045035201 @default.
- W3100933025 date "2019-03-01" @default.
- W3100933025 modified "2023-10-02" @default.
- W3100933025 title "Fast High-Dimensional Bilateral and Nonlocal Means Filtering" @default.
- W3100933025 cites W1528144695 @default.
- W3100933025 cites W1553254033 @default.
- W3100933025 cites W1960693213 @default.
- W3100933025 cites W1964443764 @default.
- W3100933025 cites W1964772475 @default.
- W3100933025 cites W1972398042 @default.
- W3100933025 cites W1987844198 @default.
- W3100933025 cites W1995194116 @default.
- W3100933025 cites W2003884262 @default.
- W3100933025 cites W2008719012 @default.
- W3100933025 cites W2026794295 @default.
- W3100933025 cites W2039596145 @default.
- W3100933025 cites W2053514113 @default.
- W3100933025 cites W2097073572 @default.
- W3100933025 cites W2099046646 @default.
- W3100933025 cites W2099244020 @default.
- W3100933025 cites W2106884232 @default.
- W3100933025 cites W2107462260 @default.
- W3100933025 cites W2125188192 @default.
- W3100933025 cites W2130754596 @default.
- W3100933025 cites W2133665775 @default.
- W3100933025 cites W2135619855 @default.
- W3100933025 cites W2137203830 @default.
- W3100933025 cites W2141957843 @default.
- W3100933025 cites W2142938914 @default.
- W3100933025 cites W2144531167 @default.
- W3100933025 cites W2150134853 @default.
- W3100933025 cites W2155919893 @default.
- W3100933025 cites W2161037052 @default.
- W3100933025 cites W2162618331 @default.
- W3100933025 cites W2244684328 @default.
- W3100933025 cites W2392129711 @default.
- W3100933025 cites W2508457857 @default.
- W3100933025 cites W2591248827 @default.
- W3100933025 cites W2754361018 @default.
- W3100933025 cites W2964153107 @default.
- W3100933025 cites W3123505101 @default.
- W3100933025 cites W3139167831 @default.
- W3100933025 cites W4247811648 @default.
- W3100933025 doi "https://doi.org/10.1109/tip.2018.2878955" @default.
- W3100933025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30387728" @default.
- W3100933025 hasPublicationYear "2019" @default.
- W3100933025 type Work @default.
- W3100933025 sameAs 3100933025 @default.
- W3100933025 citedByCount "27" @default.
- W3100933025 countsByYear W31009330252018 @default.
- W3100933025 countsByYear W31009330252019 @default.
- W3100933025 countsByYear W31009330252020 @default.
- W3100933025 countsByYear W31009330252021 @default.
- W3100933025 countsByYear W31009330252022 @default.
- W3100933025 countsByYear W31009330252023 @default.
- W3100933025 crossrefType "journal-article" @default.
- W3100933025 hasAuthorship W3100933025A5016917414 @default.
- W3100933025 hasAuthorship W3100933025A5045035201 @default.
- W3100933025 hasBestOaLocation W31009330252 @default.
- W3100933025 hasConcept C11413529 @default.
- W3100933025 hasConcept C114614502 @default.
- W3100933025 hasConcept C115961682 @default.
- W3100933025 hasConcept C120665830 @default.
- W3100933025 hasConcept C121332964 @default.
- W3100933025 hasConcept C148764684 @default.
- W3100933025 hasConcept C154945302 @default.
- W3100933025 hasConcept C156140930 @default.
- W3100933025 hasConcept C159078339 @default.
- W3100933025 hasConcept C163716315 @default.
- W3100933025 hasConcept C192209626 @default.
- W3100933025 hasConcept C28855332 @default.
- W3100933025 hasConcept C33923547 @default.
- W3100933025 hasConcept C41008148 @default.
- W3100933025 hasConcept C62520636 @default.
- W3100933025 hasConcept C73555534 @default.
- W3100933025 hasConcept C74193536 @default.
- W3100933025 hasConcept C78201319 @default.
- W3100933025 hasConceptScore W3100933025C11413529 @default.
- W3100933025 hasConceptScore W3100933025C114614502 @default.
- W3100933025 hasConceptScore W3100933025C115961682 @default.
- W3100933025 hasConceptScore W3100933025C120665830 @default.
- W3100933025 hasConceptScore W3100933025C121332964 @default.
- W3100933025 hasConceptScore W3100933025C148764684 @default.
- W3100933025 hasConceptScore W3100933025C154945302 @default.
- W3100933025 hasConceptScore W3100933025C156140930 @default.
- W3100933025 hasConceptScore W3100933025C159078339 @default.
- W3100933025 hasConceptScore W3100933025C163716315 @default.
- W3100933025 hasConceptScore W3100933025C192209626 @default.
- W3100933025 hasConceptScore W3100933025C28855332 @default.
- W3100933025 hasConceptScore W3100933025C33923547 @default.
- W3100933025 hasConceptScore W3100933025C41008148 @default.
- W3100933025 hasConceptScore W3100933025C62520636 @default.
- W3100933025 hasConceptScore W3100933025C73555534 @default.
- W3100933025 hasConceptScore W3100933025C74193536 @default.
- W3100933025 hasConceptScore W3100933025C78201319 @default.