Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100937747> ?p ?o ?g. }
- W3100937747 endingPage "54" @default.
- W3100937747 startingPage "1" @default.
- W3100937747 abstract "For an $N times N$ random unitary matrix $U_N$, we consider the random field defined by counting the number of eigenvalues of $U_N$ in a mesoscopic arc of the unit circle, regularized at an $N$-dependent scale $epsilon_N>0$. We prove that the renormalized exponential of this field converges as $N to infty$ to a Gaussian multiplicative chaos measure in the whole subcritical phase. In addition, we show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in cite{Ost16}. By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. The proofs are based on the asymptotic analysis of certain Toeplitz or Fredholm determinants using the Borodin-Okounkov formula or a Riemann-Hilbert problem for integrable operators. Our approach to the $L^{1}$-phase is based on a generalization of the construction in Berestycki cite{Berestycki15} to random fields which are only textit{asymptotically} Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context." @default.
- W3100937747 created "2020-11-23" @default.
- W3100937747 creator A5011094893 @default.
- W3100937747 creator A5023473317 @default.
- W3100937747 creator A5078997994 @default.
- W3100937747 date "2018-04-16" @default.
- W3100937747 modified "2023-10-17" @default.
- W3100937747 title "Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory" @default.
- W3100937747 cites W1482529020 @default.
- W3100937747 cites W1483560004 @default.
- W3100937747 cites W1662281867 @default.
- W3100937747 cites W1784259868 @default.
- W3100937747 cites W1862262791 @default.
- W3100937747 cites W1931441370 @default.
- W3100937747 cites W1958800402 @default.
- W3100937747 cites W1964486846 @default.
- W3100937747 cites W1968500145 @default.
- W3100937747 cites W1970929351 @default.
- W3100937747 cites W1972962012 @default.
- W3100937747 cites W1973766190 @default.
- W3100937747 cites W1986417812 @default.
- W3100937747 cites W2003618570 @default.
- W3100937747 cites W2006672084 @default.
- W3100937747 cites W2018340063 @default.
- W3100937747 cites W2021467799 @default.
- W3100937747 cites W2036305183 @default.
- W3100937747 cites W2055632796 @default.
- W3100937747 cites W2062565740 @default.
- W3100937747 cites W2065230214 @default.
- W3100937747 cites W2069842320 @default.
- W3100937747 cites W2074367171 @default.
- W3100937747 cites W2083867401 @default.
- W3100937747 cites W2093413868 @default.
- W3100937747 cites W2096010345 @default.
- W3100937747 cites W2098932612 @default.
- W3100937747 cites W2123186452 @default.
- W3100937747 cites W2145271103 @default.
- W3100937747 cites W2167577506 @default.
- W3100937747 cites W2237852048 @default.
- W3100937747 cites W2332386555 @default.
- W3100937747 cites W2346667009 @default.
- W3100937747 cites W2793152891 @default.
- W3100937747 cites W2950959300 @default.
- W3100937747 cites W2962818022 @default.
- W3100937747 cites W2963024402 @default.
- W3100937747 cites W2963048493 @default.
- W3100937747 cites W2963108791 @default.
- W3100937747 cites W2963410880 @default.
- W3100937747 cites W2963599794 @default.
- W3100937747 cites W2963969644 @default.
- W3100937747 cites W2964170490 @default.
- W3100937747 cites W3102444464 @default.
- W3100937747 cites W3102648685 @default.
- W3100937747 cites W3102858873 @default.
- W3100937747 cites W3103126198 @default.
- W3100937747 cites W3104709962 @default.
- W3100937747 cites W3106307519 @default.
- W3100937747 cites W3106331970 @default.
- W3100937747 cites W3121187802 @default.
- W3100937747 cites W327375307 @default.
- W3100937747 cites W4254759958 @default.
- W3100937747 cites W99540309 @default.
- W3100937747 doi "https://doi.org/10.1007/s00220-018-3130-z" @default.
- W3100937747 hasPublicationYear "2018" @default.
- W3100937747 type Work @default.
- W3100937747 sameAs 3100937747 @default.
- W3100937747 citedByCount "43" @default.
- W3100937747 countsByYear W31009377472016 @default.
- W3100937747 countsByYear W31009377472017 @default.
- W3100937747 countsByYear W31009377472018 @default.
- W3100937747 countsByYear W31009377472019 @default.
- W3100937747 countsByYear W31009377472020 @default.
- W3100937747 countsByYear W31009377472021 @default.
- W3100937747 countsByYear W31009377472022 @default.
- W3100937747 countsByYear W31009377472023 @default.
- W3100937747 crossrefType "journal-article" @default.
- W3100937747 hasAuthorship W3100937747A5011094893 @default.
- W3100937747 hasAuthorship W3100937747A5023473317 @default.
- W3100937747 hasAuthorship W3100937747A5078997994 @default.
- W3100937747 hasBestOaLocation W31009377471 @default.
- W3100937747 hasConcept C121332964 @default.
- W3100937747 hasConcept C126875415 @default.
- W3100937747 hasConcept C134306372 @default.
- W3100937747 hasConcept C136269434 @default.
- W3100937747 hasConcept C15184713 @default.
- W3100937747 hasConcept C158693339 @default.
- W3100937747 hasConcept C202444582 @default.
- W3100937747 hasConcept C2776333733 @default.
- W3100937747 hasConcept C33923547 @default.
- W3100937747 hasConcept C42747912 @default.
- W3100937747 hasConcept C62520636 @default.
- W3100937747 hasConcept C64812099 @default.
- W3100937747 hasConcept C84114770 @default.
- W3100937747 hasConceptScore W3100937747C121332964 @default.
- W3100937747 hasConceptScore W3100937747C126875415 @default.
- W3100937747 hasConceptScore W3100937747C134306372 @default.
- W3100937747 hasConceptScore W3100937747C136269434 @default.
- W3100937747 hasConceptScore W3100937747C15184713 @default.