Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100940031> ?p ?o ?g. }
- W3100940031 endingPage "1130" @default.
- W3100940031 startingPage "1069" @default.
- W3100940031 abstract "We study quartic matrix models with partition function Z[E,J]=int dM exp(trace(JM-EM^2-(lambda/4)M^4)). The integral is over the space of Hermitean NxN-matrices, the external matrix E encodes the dynamics, lambda>0 is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing beta-function. As main application we prove that Euclidean phi^4-quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for N->infty the same spectrum as the Laplace operator in 4 dimensions. Using the theory of singular integral equations of Carleman type we compute (for N->infty and after renormalisation of E,lambda) the free energy density (1/volume)log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which we verified numerically for coupling constants 0<lambdaleq (1/pi)." @default.
- W3100940031 created "2020-11-23" @default.
- W3100940031 creator A5028961771 @default.
- W3100940031 creator A5066470660 @default.
- W3100940031 date "2014-03-29" @default.
- W3100940031 modified "2023-09-26" @default.
- W3100940031 title "Self-Dual Noncommutative $${phi^4}$$ ϕ 4 -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory" @default.
- W3100940031 cites W1540612462 @default.
- W3100940031 cites W1554438420 @default.
- W3100940031 cites W1597171048 @default.
- W3100940031 cites W1639835126 @default.
- W3100940031 cites W1972563066 @default.
- W3100940031 cites W1974689275 @default.
- W3100940031 cites W1975711585 @default.
- W3100940031 cites W1978546836 @default.
- W3100940031 cites W1981331604 @default.
- W3100940031 cites W1987143739 @default.
- W3100940031 cites W1988538428 @default.
- W3100940031 cites W1994275197 @default.
- W3100940031 cites W1996465373 @default.
- W3100940031 cites W2002435891 @default.
- W3100940031 cites W2009930506 @default.
- W3100940031 cites W2010983924 @default.
- W3100940031 cites W2011153186 @default.
- W3100940031 cites W2018603564 @default.
- W3100940031 cites W2019836286 @default.
- W3100940031 cites W2039843295 @default.
- W3100940031 cites W2045472496 @default.
- W3100940031 cites W2053174809 @default.
- W3100940031 cites W2055032269 @default.
- W3100940031 cites W2062301836 @default.
- W3100940031 cites W2065761068 @default.
- W3100940031 cites W2067449783 @default.
- W3100940031 cites W2068674173 @default.
- W3100940031 cites W2069182458 @default.
- W3100940031 cites W2071203423 @default.
- W3100940031 cites W2072286328 @default.
- W3100940031 cites W2072453195 @default.
- W3100940031 cites W2074417120 @default.
- W3100940031 cites W2074670256 @default.
- W3100940031 cites W2085510216 @default.
- W3100940031 cites W2088680200 @default.
- W3100940031 cites W2090945154 @default.
- W3100940031 cites W2091521721 @default.
- W3100940031 cites W2092179178 @default.
- W3100940031 cites W2119229410 @default.
- W3100940031 cites W2123123408 @default.
- W3100940031 cites W2123934736 @default.
- W3100940031 cites W2124590498 @default.
- W3100940031 cites W2138554348 @default.
- W3100940031 cites W2146808728 @default.
- W3100940031 cites W2148984222 @default.
- W3100940031 cites W2173346706 @default.
- W3100940031 cites W2225144138 @default.
- W3100940031 cites W2317586084 @default.
- W3100940031 cites W2328533164 @default.
- W3100940031 cites W2333206768 @default.
- W3100940031 cites W2337223819 @default.
- W3100940031 cites W2488036022 @default.
- W3100940031 cites W2767036532 @default.
- W3100940031 cites W3101297073 @default.
- W3100940031 cites W3101330710 @default.
- W3100940031 cites W3102173928 @default.
- W3100940031 cites W3105569493 @default.
- W3100940031 cites W4244247321 @default.
- W3100940031 cites W4256633691 @default.
- W3100940031 doi "https://doi.org/10.1007/s00220-014-1906-3" @default.
- W3100940031 hasPublicationYear "2014" @default.
- W3100940031 type Work @default.
- W3100940031 sameAs 3100940031 @default.
- W3100940031 citedByCount "68" @default.
- W3100940031 countsByYear W31009400312013 @default.
- W3100940031 countsByYear W31009400312014 @default.
- W3100940031 countsByYear W31009400312015 @default.
- W3100940031 countsByYear W31009400312016 @default.
- W3100940031 countsByYear W31009400312017 @default.
- W3100940031 countsByYear W31009400312018 @default.
- W3100940031 countsByYear W31009400312019 @default.
- W3100940031 countsByYear W31009400312020 @default.
- W3100940031 countsByYear W31009400312021 @default.
- W3100940031 countsByYear W31009400312022 @default.
- W3100940031 countsByYear W31009400312023 @default.
- W3100940031 crossrefType "journal-article" @default.
- W3100940031 hasAuthorship W3100940031A5028961771 @default.
- W3100940031 hasAuthorship W3100940031A5066470660 @default.
- W3100940031 hasBestOaLocation W31009400312 @default.
- W3100940031 hasConcept C115047598 @default.
- W3100940031 hasConcept C121332964 @default.
- W3100940031 hasConcept C130432447 @default.
- W3100940031 hasConcept C134306372 @default.
- W3100940031 hasConcept C154018700 @default.
- W3100940031 hasConcept C202444582 @default.
- W3100940031 hasConcept C2778401447 @default.
- W3100940031 hasConcept C33923547 @default.
- W3100940031 hasConcept C37914503 @default.
- W3100940031 hasConcept C62520636 @default.
- W3100940031 hasConcept C68797384 @default.
- W3100940031 hasConcept C84114770 @default.