Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100941475> ?p ?o ?g. }
- W3100941475 abstract "Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g. hate speech, cyberbulling, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this paper, we take advantage of English data available by applying cross-lingual contextual word embeddings and transfer learning to make predictions in languages with less resources. We project predictions on comparable data in Bengali, Hindi, and Spanish and we report results of 0.8415 F1 macro for Bengali, 0.8568 F1 macro for Hindi, and 0.7513 F1 macro for Spanish. Finally, we show that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages, confirming the robustness of cross-lingual contextual embeddings and transfer learning for this task." @default.
- W3100941475 created "2020-11-23" @default.
- W3100941475 creator A5024937008 @default.
- W3100941475 creator A5061000186 @default.
- W3100941475 date "2020-01-01" @default.
- W3100941475 modified "2023-10-16" @default.
- W3100941475 title "Multilingual Offensive Language Identification with Cross-lingual Embeddings" @default.
- W3100941475 cites W1492737170 @default.
- W3100941475 cites W205930466 @default.
- W3100941475 cites W2105644778 @default.
- W3100941475 cites W2169477395 @default.
- W3100941475 cites W2747187574 @default.
- W3100941475 cites W2772345395 @default.
- W3100941475 cites W2904937466 @default.
- W3100941475 cites W2912102236 @default.
- W3100941475 cites W2912123473 @default.
- W3100941475 cites W2913021334 @default.
- W3100941475 cites W2913474415 @default.
- W3100941475 cites W2922580172 @default.
- W3100941475 cites W2952629768 @default.
- W3100941475 cites W2952638691 @default.
- W3100941475 cites W2953553271 @default.
- W3100941475 cites W2954346034 @default.
- W3100941475 cites W2962739339 @default.
- W3100941475 cites W2962932155 @default.
- W3100941475 cites W2962977603 @default.
- W3100941475 cites W2962993339 @default.
- W3100941475 cites W2963341956 @default.
- W3100941475 cites W2963490918 @default.
- W3100941475 cites W2963943967 @default.
- W3100941475 cites W2972740340 @default.
- W3100941475 cites W2980708516 @default.
- W3100941475 cites W2983040767 @default.
- W3100941475 cites W2995015695 @default.
- W3100941475 cites W3000571327 @default.
- W3100941475 cites W3003873775 @default.
- W3100941475 cites W3004178028 @default.
- W3100941475 cites W3014459433 @default.
- W3100941475 cites W3030332779 @default.
- W3100941475 cites W3031351395 @default.
- W3100941475 cites W3031484690 @default.
- W3100941475 cites W3031939012 @default.
- W3100941475 cites W3032237992 @default.
- W3100941475 cites W3032261270 @default.
- W3100941475 cites W3045056960 @default.
- W3100941475 cites W3088197984 @default.
- W3100941475 cites W3113914437 @default.
- W3100941475 cites W2954885812 @default.
- W3100941475 doi "https://doi.org/10.18653/v1/2020.emnlp-main.470" @default.
- W3100941475 hasPublicationYear "2020" @default.
- W3100941475 type Work @default.
- W3100941475 sameAs 3100941475 @default.
- W3100941475 citedByCount "74" @default.
- W3100941475 countsByYear W31009414752020 @default.
- W3100941475 countsByYear W31009414752021 @default.
- W3100941475 countsByYear W31009414752022 @default.
- W3100941475 countsByYear W31009414752023 @default.
- W3100941475 crossrefType "proceedings-article" @default.
- W3100941475 hasAuthorship W3100941475A5024937008 @default.
- W3100941475 hasAuthorship W3100941475A5061000186 @default.
- W3100941475 hasBestOaLocation W31009414751 @default.
- W3100941475 hasConcept C104317684 @default.
- W3100941475 hasConcept C116834253 @default.
- W3100941475 hasConcept C129792486 @default.
- W3100941475 hasConcept C136764020 @default.
- W3100941475 hasConcept C138885662 @default.
- W3100941475 hasConcept C150856459 @default.
- W3100941475 hasConcept C150899416 @default.
- W3100941475 hasConcept C154945302 @default.
- W3100941475 hasConcept C162324750 @default.
- W3100941475 hasConcept C166955791 @default.
- W3100941475 hasConcept C176856949 @default.
- W3100941475 hasConcept C185592680 @default.
- W3100941475 hasConcept C187736073 @default.
- W3100941475 hasConcept C19235068 @default.
- W3100941475 hasConcept C195324797 @default.
- W3100941475 hasConcept C199360897 @default.
- W3100941475 hasConcept C204321447 @default.
- W3100941475 hasConcept C2778137410 @default.
- W3100941475 hasConcept C2780451532 @default.
- W3100941475 hasConcept C2994428975 @default.
- W3100941475 hasConcept C33923547 @default.
- W3100941475 hasConcept C41008148 @default.
- W3100941475 hasConcept C41895202 @default.
- W3100941475 hasConcept C42475967 @default.
- W3100941475 hasConcept C518677369 @default.
- W3100941475 hasConcept C519982507 @default.
- W3100941475 hasConcept C554936623 @default.
- W3100941475 hasConcept C55493867 @default.
- W3100941475 hasConcept C59822182 @default.
- W3100941475 hasConcept C63479239 @default.
- W3100941475 hasConcept C86803240 @default.
- W3100941475 hasConceptScore W3100941475C104317684 @default.
- W3100941475 hasConceptScore W3100941475C116834253 @default.
- W3100941475 hasConceptScore W3100941475C129792486 @default.
- W3100941475 hasConceptScore W3100941475C136764020 @default.
- W3100941475 hasConceptScore W3100941475C138885662 @default.
- W3100941475 hasConceptScore W3100941475C150856459 @default.
- W3100941475 hasConceptScore W3100941475C150899416 @default.
- W3100941475 hasConceptScore W3100941475C154945302 @default.