Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100941567> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3100941567 endingPage "1333" @default.
- W3100941567 startingPage "1322" @default.
- W3100941567 abstract "In this work, a new data-driven fiber channel modeling method, generative adversarial network (GAN) is investigated to learn the distribution of fiber channel transfer function. Our investigation focuses on joint channel effects of attenuation, chromic dispersion, self-phase modulation (SPM), and amplified spontaneous emission (ASE) noise. To achieve the success of GAN for channel modeling, we modify the loss function, design the condition vector of input and address the mode collapse for the long-haul transmission. The effective architecture, parameters, and training skills of GAN are also displayed in the paper. The results show that the proposed method can learn the accurate transfer function of the fiber channel. The transmission distance of modeling can be up to 1000 km and can be extended to arbitrary distance theoretically. Moreover, GAN shows robust generalization abilities under different optical launch powers, modulation formats, and input signal distributions. Comparing the complexity of GAN with the split-step Fourier method (SSFM), the total multiplication number is only 2% of SSFM and the running time is less than 0.1 seconds for 1000-km transmission, versus 400 seconds using the SSFM under the same hardware and software conditions, which highlights the remarkable reduction in complexity of the fiber channel modeling." @default.
- W3100941567 created "2020-11-23" @default.
- W3100941567 creator A5011327265 @default.
- W3100941567 creator A5018694299 @default.
- W3100941567 creator A5034847082 @default.
- W3100941567 creator A5042196856 @default.
- W3100941567 creator A5042616610 @default.
- W3100941567 creator A5076641696 @default.
- W3100941567 creator A5079621114 @default.
- W3100941567 date "2021-03-01" @default.
- W3100941567 modified "2023-10-17" @default.
- W3100941567 title "Fast and Accurate Optical Fiber Channel Modeling Using Generative Adversarial Network" @default.
- W3100941567 cites W1518192576 @default.
- W3100941567 cites W1677182931 @default.
- W3100941567 cites W1980735512 @default.
- W3100941567 cites W1985518380 @default.
- W3100941567 cites W1991329089 @default.
- W3100941567 cites W2031211082 @default.
- W3100941567 cites W2102049403 @default.
- W3100941567 cites W2114716909 @default.
- W3100941567 cites W2120432001 @default.
- W3100941567 cites W2123878065 @default.
- W3100941567 cites W2150414787 @default.
- W3100941567 cites W2180748755 @default.
- W3100941567 cites W2962902015 @default.
- W3100941567 cites W2962964572 @default.
- W3100941567 cites W2963017889 @default.
- W3100941567 cites W2963321191 @default.
- W3100941567 cites W2963426391 @default.
- W3100941567 cites W2963470893 @default.
- W3100941567 cites W2965385473 @default.
- W3100941567 cites W3010470037 @default.
- W3100941567 cites W3022631314 @default.
- W3100941567 cites W3103666603 @default.
- W3100941567 doi "https://doi.org/10.1109/jlt.2020.3037905" @default.
- W3100941567 hasPublicationYear "2021" @default.
- W3100941567 type Work @default.
- W3100941567 sameAs 3100941567 @default.
- W3100941567 citedByCount "36" @default.
- W3100941567 countsByYear W31009415672021 @default.
- W3100941567 countsByYear W31009415672022 @default.
- W3100941567 countsByYear W31009415672023 @default.
- W3100941567 crossrefType "journal-article" @default.
- W3100941567 hasAuthorship W3100941567A5011327265 @default.
- W3100941567 hasAuthorship W3100941567A5018694299 @default.
- W3100941567 hasAuthorship W3100941567A5034847082 @default.
- W3100941567 hasAuthorship W3100941567A5042196856 @default.
- W3100941567 hasAuthorship W3100941567A5042616610 @default.
- W3100941567 hasAuthorship W3100941567A5076641696 @default.
- W3100941567 hasAuthorship W3100941567A5079621114 @default.
- W3100941567 hasBestOaLocation W31009415672 @default.
- W3100941567 hasConcept C119599485 @default.
- W3100941567 hasConcept C127162648 @default.
- W3100941567 hasConcept C127413603 @default.
- W3100941567 hasConcept C24326235 @default.
- W3100941567 hasConcept C31258907 @default.
- W3100941567 hasConcept C41008148 @default.
- W3100941567 hasConcept C557945733 @default.
- W3100941567 hasConcept C761482 @default.
- W3100941567 hasConcept C76155785 @default.
- W3100941567 hasConcept C81299745 @default.
- W3100941567 hasConceptScore W3100941567C119599485 @default.
- W3100941567 hasConceptScore W3100941567C127162648 @default.
- W3100941567 hasConceptScore W3100941567C127413603 @default.
- W3100941567 hasConceptScore W3100941567C24326235 @default.
- W3100941567 hasConceptScore W3100941567C31258907 @default.
- W3100941567 hasConceptScore W3100941567C41008148 @default.
- W3100941567 hasConceptScore W3100941567C557945733 @default.
- W3100941567 hasConceptScore W3100941567C761482 @default.
- W3100941567 hasConceptScore W3100941567C76155785 @default.
- W3100941567 hasConceptScore W3100941567C81299745 @default.
- W3100941567 hasIssue "5" @default.
- W3100941567 hasLocation W31009415671 @default.
- W3100941567 hasLocation W31009415672 @default.
- W3100941567 hasOpenAccess W3100941567 @default.
- W3100941567 hasPrimaryLocation W31009415671 @default.
- W3100941567 hasRelatedWork W1509337428 @default.
- W3100941567 hasRelatedWork W2141579362 @default.
- W3100941567 hasRelatedWork W2169060532 @default.
- W3100941567 hasRelatedWork W2359432571 @default.
- W3100941567 hasRelatedWork W2373884286 @default.
- W3100941567 hasRelatedWork W2378921939 @default.
- W3100941567 hasRelatedWork W2590904353 @default.
- W3100941567 hasRelatedWork W3189692110 @default.
- W3100941567 hasRelatedWork W3207281247 @default.
- W3100941567 hasRelatedWork W2062429661 @default.
- W3100941567 hasVolume "39" @default.
- W3100941567 isParatext "false" @default.
- W3100941567 isRetracted "false" @default.
- W3100941567 magId "3100941567" @default.
- W3100941567 workType "article" @default.