Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100942525> ?p ?o ?g. }
- W3100942525 endingPage "695" @default.
- W3100942525 startingPage "677" @default.
- W3100942525 abstract "Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. There is a great amount of work about linear and nonlinear QR models. Specifically, nonparametric estimation of the conditional quantiles received particular attention, due to its model flexibility. However, nonparametric QR techniques are limited in the number of covariates. Dimension reduction offers a solution to this problem by considering low-dimensional smoothing without specifying any parametric or nonparametric regression relation. Existing dimension reduction techniques focus on the entire conditional distribution. We, on the other hand, turn our attention to dimension reduction techniques for conditional quantiles and introduce a new method for reducing the dimension of the predictor X. The novelty of this paper is threefold. We start by considering a single index quantile regression model, which assumes that the conditional quantile depends on X through a single linear combination of the predictors, then extend to a multi index quantile regression model, and finally, generalize the proposed methodology to any statistical functional of the conditional distribution. The performance of the methodology is demonstrated through simulation examples and a real data application. Our results suggest that this method has a good finite sample performance and often outperforms existing methods." @default.
- W3100942525 created "2020-11-23" @default.
- W3100942525 creator A5062646928 @default.
- W3100942525 date "2019-12-18" @default.
- W3100942525 modified "2023-09-27" @default.
- W3100942525 title "Central quantile subspace" @default.
- W3100942525 cites W1968104963 @default.
- W3100942525 cites W1971789569 @default.
- W3100942525 cites W1977085253 @default.
- W3100942525 cites W1978930294 @default.
- W3100942525 cites W1996844906 @default.
- W3100942525 cites W2012801463 @default.
- W3100942525 cites W2020593748 @default.
- W3100942525 cites W2027123933 @default.
- W3100942525 cites W2028828492 @default.
- W3100942525 cites W2029469881 @default.
- W3100942525 cites W2030748132 @default.
- W3100942525 cites W2032460509 @default.
- W3100942525 cites W2044449183 @default.
- W3100942525 cites W2049496090 @default.
- W3100942525 cites W2054565503 @default.
- W3100942525 cites W2060121127 @default.
- W3100942525 cites W2064835670 @default.
- W3100942525 cites W2066740458 @default.
- W3100942525 cites W2066853473 @default.
- W3100942525 cites W2067729692 @default.
- W3100942525 cites W2073767661 @default.
- W3100942525 cites W2074011487 @default.
- W3100942525 cites W2085143070 @default.
- W3100942525 cites W2085523294 @default.
- W3100942525 cites W2086014844 @default.
- W3100942525 cites W2100011707 @default.
- W3100942525 cites W2115585728 @default.
- W3100942525 cites W2118825164 @default.
- W3100942525 cites W2144405862 @default.
- W3100942525 cites W2159813797 @default.
- W3100942525 cites W2160276648 @default.
- W3100942525 cites W2163490846 @default.
- W3100942525 cites W2171050905 @default.
- W3100942525 cites W2275719586 @default.
- W3100942525 cites W2344467472 @default.
- W3100942525 cites W2408774189 @default.
- W3100942525 cites W2567488862 @default.
- W3100942525 cites W2772537709 @default.
- W3100942525 cites W2802104829 @default.
- W3100942525 cites W2943563408 @default.
- W3100942525 cites W3098125469 @default.
- W3100942525 cites W3099354022 @default.
- W3100942525 cites W3101631235 @default.
- W3100942525 cites W3102028468 @default.
- W3100942525 cites W3104953029 @default.
- W3100942525 cites W4213170682 @default.
- W3100942525 cites W4241653265 @default.
- W3100942525 doi "https://doi.org/10.1007/s11222-019-09915-8" @default.
- W3100942525 hasPublicationYear "2019" @default.
- W3100942525 type Work @default.
- W3100942525 sameAs 3100942525 @default.
- W3100942525 citedByCount "11" @default.
- W3100942525 countsByYear W31009425252019 @default.
- W3100942525 countsByYear W31009425252020 @default.
- W3100942525 countsByYear W31009425252021 @default.
- W3100942525 countsByYear W31009425252022 @default.
- W3100942525 countsByYear W31009425252023 @default.
- W3100942525 crossrefType "journal-article" @default.
- W3100942525 hasAuthorship W3100942525A5062646928 @default.
- W3100942525 hasBestOaLocation W31009425252 @default.
- W3100942525 hasConcept C102366305 @default.
- W3100942525 hasConcept C105795698 @default.
- W3100942525 hasConcept C117251300 @default.
- W3100942525 hasConcept C118671147 @default.
- W3100942525 hasConcept C149782125 @default.
- W3100942525 hasConcept C152877465 @default.
- W3100942525 hasConcept C154945302 @default.
- W3100942525 hasConcept C186215838 @default.
- W3100942525 hasConcept C202444582 @default.
- W3100942525 hasConcept C27931671 @default.
- W3100942525 hasConcept C33676613 @default.
- W3100942525 hasConcept C33923547 @default.
- W3100942525 hasConcept C3770464 @default.
- W3100942525 hasConcept C41008148 @default.
- W3100942525 hasConcept C41341539 @default.
- W3100942525 hasConcept C43555835 @default.
- W3100942525 hasConcept C63817138 @default.
- W3100942525 hasConcept C70518039 @default.
- W3100942525 hasConcept C83546350 @default.
- W3100942525 hasConceptScore W3100942525C102366305 @default.
- W3100942525 hasConceptScore W3100942525C105795698 @default.
- W3100942525 hasConceptScore W3100942525C117251300 @default.
- W3100942525 hasConceptScore W3100942525C118671147 @default.
- W3100942525 hasConceptScore W3100942525C149782125 @default.
- W3100942525 hasConceptScore W3100942525C152877465 @default.
- W3100942525 hasConceptScore W3100942525C154945302 @default.
- W3100942525 hasConceptScore W3100942525C186215838 @default.
- W3100942525 hasConceptScore W3100942525C202444582 @default.
- W3100942525 hasConceptScore W3100942525C27931671 @default.
- W3100942525 hasConceptScore W3100942525C33676613 @default.
- W3100942525 hasConceptScore W3100942525C33923547 @default.
- W3100942525 hasConceptScore W3100942525C3770464 @default.