Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100945976> ?p ?o ?g. }
- W3100945976 endingPage "3649" @default.
- W3100945976 startingPage "3640" @default.
- W3100945976 abstract "Severity prediction of COVID-19 remains one of the major clinical challenges for the ongoing pandemic. Here, we have recruited a 144 COVID-19 patient cohort, resulting in a data matrix containing 3,065 readings for 124 types of measurements over 52 days. A machine learning model was established to predict the disease progression based on the cohort consisting of training, validation, and internal test sets. A panel of eleven routine clinical factors constructed a classifier for COVID-19 severity prediction, achieving accuracy of over 98% in the discovery set. Validation of the model in an independent cohort containing 25 patients achieved accuracy of 80%. The overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.70, 0.99, 0.93, and 0.93, respectively. Our model captured predictive dynamics of lactate dehydrogenase (LDH) and creatine kinase (CK) while their levels were in the normal range. This model is accessible at https://www.guomics.com/covidAI/ for research purpose." @default.
- W3100945976 created "2020-11-23" @default.
- W3100945976 creator A5001504785 @default.
- W3100945976 creator A5002051017 @default.
- W3100945976 creator A5007012841 @default.
- W3100945976 creator A5012441796 @default.
- W3100945976 creator A5016095471 @default.
- W3100945976 creator A5018006068 @default.
- W3100945976 creator A5021189022 @default.
- W3100945976 creator A5021976224 @default.
- W3100945976 creator A5022499603 @default.
- W3100945976 creator A5022550580 @default.
- W3100945976 creator A5024527740 @default.
- W3100945976 creator A5026505563 @default.
- W3100945976 creator A5027835055 @default.
- W3100945976 creator A5041614972 @default.
- W3100945976 creator A5043019475 @default.
- W3100945976 creator A5046739081 @default.
- W3100945976 creator A5049413689 @default.
- W3100945976 creator A5049894588 @default.
- W3100945976 creator A5050196319 @default.
- W3100945976 creator A5051405817 @default.
- W3100945976 creator A5056788839 @default.
- W3100945976 creator A5062758711 @default.
- W3100945976 creator A5076498651 @default.
- W3100945976 creator A5078990883 @default.
- W3100945976 creator A5081892733 @default.
- W3100945976 creator A5082786719 @default.
- W3100945976 creator A5083031332 @default.
- W3100945976 creator A5083890521 @default.
- W3100945976 creator A5084914899 @default.
- W3100945976 creator A5087239255 @default.
- W3100945976 creator A5087620844 @default.
- W3100945976 creator A5089692589 @default.
- W3100945976 creator A5090297471 @default.
- W3100945976 creator A5091060183 @default.
- W3100945976 date "2021-01-01" @default.
- W3100945976 modified "2023-10-03" @default.
- W3100945976 title "Eleven routine clinical features predict COVID-19 severity uncovered by machine learning of longitudinal measurements" @default.
- W3100945976 cites W166169566 @default.
- W3100945976 cites W2020355555 @default.
- W3100945976 cites W2097571405 @default.
- W3100945976 cites W2110219816 @default.
- W3100945976 cites W2593144838 @default.
- W3100945976 cites W2756945639 @default.
- W3100945976 cites W2798105113 @default.
- W3100945976 cites W3001118548 @default.
- W3100945976 cites W3008028633 @default.
- W3100945976 cites W3008827533 @default.
- W3100945976 cites W3011061450 @default.
- W3100945976 cites W3012290165 @default.
- W3100945976 cites W3012925204 @default.
- W3100945976 cites W3015407900 @default.
- W3100945976 cites W3015438945 @default.
- W3100945976 cites W3016393661 @default.
- W3100945976 cites W3017334101 @default.
- W3100945976 cites W3022149127 @default.
- W3100945976 cites W3022778033 @default.
- W3100945976 cites W3023125802 @default.
- W3100945976 cites W3024853795 @default.
- W3100945976 cites W3025016712 @default.
- W3100945976 cites W3037163353 @default.
- W3100945976 cites W3042100171 @default.
- W3100945976 cites W3046496943 @default.
- W3100945976 cites W3083193624 @default.
- W3100945976 cites W3091999679 @default.
- W3100945976 cites W3104739447 @default.
- W3100945976 cites W3123904962 @default.
- W3100945976 cites W3165656738 @default.
- W3100945976 cites W4205423587 @default.
- W3100945976 cites W4232356144 @default.
- W3100945976 doi "https://doi.org/10.1016/j.csbj.2021.06.022" @default.
- W3100945976 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8225590" @default.
- W3100945976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34188785" @default.
- W3100945976 hasPublicationYear "2021" @default.
- W3100945976 type Work @default.
- W3100945976 sameAs 3100945976 @default.
- W3100945976 citedByCount "25" @default.
- W3100945976 countsByYear W31009459762020 @default.
- W3100945976 countsByYear W31009459762021 @default.
- W3100945976 countsByYear W31009459762022 @default.
- W3100945976 countsByYear W31009459762023 @default.
- W3100945976 crossrefType "journal-article" @default.
- W3100945976 hasAuthorship W3100945976A5001504785 @default.
- W3100945976 hasAuthorship W3100945976A5002051017 @default.
- W3100945976 hasAuthorship W3100945976A5007012841 @default.
- W3100945976 hasAuthorship W3100945976A5012441796 @default.
- W3100945976 hasAuthorship W3100945976A5016095471 @default.
- W3100945976 hasAuthorship W3100945976A5018006068 @default.
- W3100945976 hasAuthorship W3100945976A5021189022 @default.
- W3100945976 hasAuthorship W3100945976A5021976224 @default.
- W3100945976 hasAuthorship W3100945976A5022499603 @default.
- W3100945976 hasAuthorship W3100945976A5022550580 @default.
- W3100945976 hasAuthorship W3100945976A5024527740 @default.
- W3100945976 hasAuthorship W3100945976A5026505563 @default.
- W3100945976 hasAuthorship W3100945976A5027835055 @default.
- W3100945976 hasAuthorship W3100945976A5041614972 @default.
- W3100945976 hasAuthorship W3100945976A5043019475 @default.