Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100946043> ?p ?o ?g. }
- W3100946043 endingPage "1534" @default.
- W3100946043 startingPage "1534" @default.
- W3100946043 abstract "This study considers the use of deep learning to diagnose osteoporosis from hip radiographs, and whether adding clinical data improves diagnostic performance over the image mode alone. For objective labeling, we collected a dataset containing 1131 images from patients who underwent both skeletal bone mineral density measurement and hip radiography at a single general hospital between 2014 and 2019. Osteoporosis was assessed from the hip radiographs using five convolutional neural network (CNN) models. We also investigated ensemble models with clinical covariates added to each CNN. The accuracy, precision, recall, specificity, negative predictive value (npv), F1 score, and area under the curve (AUC) score were calculated for each network. In the evaluation of the five CNN models using only hip radiographs, GoogleNet and EfficientNet b3 exhibited the best accuracy, precision, and specificity. Among the five ensemble models, EfficientNet b3 exhibited the best accuracy, recall, npv, F1 score, and AUC score when patient variables were included. The CNN models diagnosed osteoporosis from hip radiographs with high accuracy, and their performance improved further with the addition of clinical covariates from patient records." @default.
- W3100946043 created "2020-11-23" @default.
- W3100946043 creator A5000807245 @default.
- W3100946043 creator A5005444399 @default.
- W3100946043 creator A5011858380 @default.
- W3100946043 creator A5012233359 @default.
- W3100946043 creator A5014479735 @default.
- W3100946043 creator A5023061079 @default.
- W3100946043 creator A5037730263 @default.
- W3100946043 creator A5040373406 @default.
- W3100946043 creator A5046401386 @default.
- W3100946043 creator A5051462391 @default.
- W3100946043 creator A5071604185 @default.
- W3100946043 creator A5091341412 @default.
- W3100946043 date "2020-11-10" @default.
- W3100946043 modified "2023-10-16" @default.
- W3100946043 title "Deep Learning for Osteoporosis Classification Using Hip Radiographs and Patient Clinical Covariates" @default.
- W3100946043 cites W1545112386 @default.
- W3100946043 cites W1982894461 @default.
- W3100946043 cites W1985186860 @default.
- W3100946043 cites W2006626498 @default.
- W3100946043 cites W2010812814 @default.
- W3100946043 cites W2017480411 @default.
- W3100946043 cites W2025877986 @default.
- W3100946043 cites W2026012728 @default.
- W3100946043 cites W2030796103 @default.
- W3100946043 cites W2049849320 @default.
- W3100946043 cites W2053389701 @default.
- W3100946043 cites W2058662006 @default.
- W3100946043 cites W2066545644 @default.
- W3100946043 cites W2097117768 @default.
- W3100946043 cites W2112965041 @default.
- W3100946043 cites W2122805762 @default.
- W3100946043 cites W2123570456 @default.
- W3100946043 cites W2161094166 @default.
- W3100946043 cites W2171709369 @default.
- W3100946043 cites W2429632541 @default.
- W3100946043 cites W2594296766 @default.
- W3100946043 cites W27027059 @default.
- W3100946043 cites W2734822385 @default.
- W3100946043 cites W2755612671 @default.
- W3100946043 cites W2772057293 @default.
- W3100946043 cites W2789563975 @default.
- W3100946043 cites W2792790345 @default.
- W3100946043 cites W2803408836 @default.
- W3100946043 cites W2804925316 @default.
- W3100946043 cites W2811095288 @default.
- W3100946043 cites W2899835486 @default.
- W3100946043 cites W2903137757 @default.
- W3100946043 cites W2909871753 @default.
- W3100946043 cites W2920391337 @default.
- W3100946043 cites W2921397320 @default.
- W3100946043 cites W2922751038 @default.
- W3100946043 cites W2935090763 @default.
- W3100946043 cites W2943276308 @default.
- W3100946043 cites W2963143328 @default.
- W3100946043 cites W2963521553 @default.
- W3100946043 cites W2990294637 @default.
- W3100946043 cites W3000677463 @default.
- W3100946043 cites W3003905048 @default.
- W3100946043 cites W3005479502 @default.
- W3100946043 cites W3008424049 @default.
- W3100946043 cites W3038004531 @default.
- W3100946043 cites W3040232122 @default.
- W3100946043 cites W3102564565 @default.
- W3100946043 cites W4240851819 @default.
- W3100946043 doi "https://doi.org/10.3390/biom10111534" @default.
- W3100946043 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7697189" @default.
- W3100946043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33182778" @default.
- W3100946043 hasPublicationYear "2020" @default.
- W3100946043 type Work @default.
- W3100946043 sameAs 3100946043 @default.
- W3100946043 citedByCount "57" @default.
- W3100946043 countsByYear W31009460432021 @default.
- W3100946043 countsByYear W31009460432022 @default.
- W3100946043 countsByYear W31009460432023 @default.
- W3100946043 crossrefType "journal-article" @default.
- W3100946043 hasAuthorship W3100946043A5000807245 @default.
- W3100946043 hasAuthorship W3100946043A5005444399 @default.
- W3100946043 hasAuthorship W3100946043A5011858380 @default.
- W3100946043 hasAuthorship W3100946043A5012233359 @default.
- W3100946043 hasAuthorship W3100946043A5014479735 @default.
- W3100946043 hasAuthorship W3100946043A5023061079 @default.
- W3100946043 hasAuthorship W3100946043A5037730263 @default.
- W3100946043 hasAuthorship W3100946043A5040373406 @default.
- W3100946043 hasAuthorship W3100946043A5046401386 @default.
- W3100946043 hasAuthorship W3100946043A5051462391 @default.
- W3100946043 hasAuthorship W3100946043A5071604185 @default.
- W3100946043 hasAuthorship W3100946043A5091341412 @default.
- W3100946043 hasBestOaLocation W31009460431 @default.
- W3100946043 hasConcept C100660578 @default.
- W3100946043 hasConcept C119043178 @default.
- W3100946043 hasConcept C119857082 @default.
- W3100946043 hasConcept C126322002 @default.
- W3100946043 hasConcept C126838900 @default.
- W3100946043 hasConcept C148524875 @default.
- W3100946043 hasConcept C154945302 @default.
- W3100946043 hasConcept C15744967 @default.