Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100960090> ?p ?o ?g. }
- W3100960090 endingPage "1347" @default.
- W3100960090 startingPage "1327" @default.
- W3100960090 abstract "Geochemically discriminating between magmatism in different tectonic settings remains a fundamental part of understanding the processes of magma generation within the Earth's mantle. Here, we present an approach where machine-learning (ML) methods are used for quantitative tectonic discrimination and feature selection using global geochemical datasets containing data for volcanic rocks generated in eight different tectonic settings. This study uses support vector machine, random forest, and sparse multinomial regression (SMR) approaches. All these ML methods with data for 20 elements and 5 isotopic ratios allowed the successful geochemical discrimination between igneous rocks formed in eight different tectonic settings with a discriminant ratio better than 83% for all settings barring oceanic plateaus and back-arc basins. SMR is a particularly powerful and interpretable ML method because it quantitatively identifies geochemical signatures that characterize the tectonic settings of interest and the characteristics of each sample as a probability of the membership of the sample for each setting. We also present the most representative basalt composition for each tectonic setting. The new data provide reference points for future geochemical discussions. Our results indicate that at least 17 elements and isotopic ratios are required to characterize each tectonic setting, suggesting that geochemical tectonic discrimination cannot be achieved using only a small number of elemental compositions and/or isotopic ratios. The results show that volcanic rocks formed in different tectonic settings have unique geochemical signatures, indicating that both volcanic rock geochemistry and magma generation processes are closely connected to the tectonic setting." @default.
- W3100960090 created "2020-11-23" @default.
- W3100960090 creator A5010583413 @default.
- W3100960090 creator A5023633849 @default.
- W3100960090 creator A5085110390 @default.
- W3100960090 date "2018-04-01" @default.
- W3100960090 modified "2023-10-16" @default.
- W3100960090 title "Geochemical Discrimination and Characteristics of Magmatic Tectonic Settings: A Machine-Learning-Based Approach" @default.
- W3100960090 cites W1201148940 @default.
- W3100960090 cites W120178812 @default.
- W3100960090 cites W1566514932 @default.
- W3100960090 cites W1807812827 @default.
- W3100960090 cites W1809275921 @default.
- W3100960090 cites W1857963832 @default.
- W3100960090 cites W1964909252 @default.
- W3100960090 cites W1969859799 @default.
- W3100960090 cites W1973200025 @default.
- W3100960090 cites W1974731988 @default.
- W3100960090 cites W1975787055 @default.
- W3100960090 cites W1979705656 @default.
- W3100960090 cites W1982877802 @default.
- W3100960090 cites W1985649750 @default.
- W3100960090 cites W1990643871 @default.
- W3100960090 cites W2010956256 @default.
- W3100960090 cites W2012099097 @default.
- W3100960090 cites W2015396785 @default.
- W3100960090 cites W2018314772 @default.
- W3100960090 cites W201842505 @default.
- W3100960090 cites W2027442956 @default.
- W3100960090 cites W2032863629 @default.
- W3100960090 cites W2035283420 @default.
- W3100960090 cites W2039346746 @default.
- W3100960090 cites W2039987927 @default.
- W3100960090 cites W2044012304 @default.
- W3100960090 cites W2044615237 @default.
- W3100960090 cites W2050251962 @default.
- W3100960090 cites W2057814172 @default.
- W3100960090 cites W2068835211 @default.
- W3100960090 cites W2072977827 @default.
- W3100960090 cites W2073397801 @default.
- W3100960090 cites W2083784240 @default.
- W3100960090 cites W2094264745 @default.
- W3100960090 cites W2098426706 @default.
- W3100960090 cites W2102939388 @default.
- W3100960090 cites W2108821168 @default.
- W3100960090 cites W2111006863 @default.
- W3100960090 cites W2120630842 @default.
- W3100960090 cites W2123407080 @default.
- W3100960090 cites W2126494933 @default.
- W3100960090 cites W2128091490 @default.
- W3100960090 cites W2139788788 @default.
- W3100960090 cites W2145191782 @default.
- W3100960090 cites W2148514253 @default.
- W3100960090 cites W2150579376 @default.
- W3100960090 cites W2151802570 @default.
- W3100960090 cites W2157446566 @default.
- W3100960090 cites W2161188118 @default.
- W3100960090 cites W2164483315 @default.
- W3100960090 cites W2261059368 @default.
- W3100960090 cites W2325019720 @default.
- W3100960090 cites W2526892319 @default.
- W3100960090 cites W2582814238 @default.
- W3100960090 cites W2586555907 @default.
- W3100960090 cites W2737135139 @default.
- W3100960090 cites W2739176664 @default.
- W3100960090 cites W2747848743 @default.
- W3100960090 cites W2759550140 @default.
- W3100960090 cites W2911964244 @default.
- W3100960090 cites W2990239683 @default.
- W3100960090 cites W3098040851 @default.
- W3100960090 cites W3124928229 @default.
- W3100960090 cites W4239510810 @default.
- W3100960090 cites W4240071307 @default.
- W3100960090 cites W845681889 @default.
- W3100960090 cites W90864584 @default.
- W3100960090 doi "https://doi.org/10.1029/2017gc007401" @default.
- W3100960090 hasPublicationYear "2018" @default.
- W3100960090 type Work @default.
- W3100960090 sameAs 3100960090 @default.
- W3100960090 citedByCount "52" @default.
- W3100960090 countsByYear W31009600902018 @default.
- W3100960090 countsByYear W31009600902019 @default.
- W3100960090 countsByYear W31009600902020 @default.
- W3100960090 countsByYear W31009600902021 @default.
- W3100960090 countsByYear W31009600902022 @default.
- W3100960090 countsByYear W31009600902023 @default.
- W3100960090 crossrefType "journal-article" @default.
- W3100960090 hasAuthorship W3100960090A5010583413 @default.
- W3100960090 hasAuthorship W3100960090A5023633849 @default.
- W3100960090 hasAuthorship W3100960090A5085110390 @default.
- W3100960090 hasBestOaLocation W31009600901 @default.
- W3100960090 hasConcept C120806208 @default.
- W3100960090 hasConcept C127313418 @default.
- W3100960090 hasConcept C161509811 @default.
- W3100960090 hasConcept C162973429 @default.
- W3100960090 hasConcept C165205528 @default.
- W3100960090 hasConcept C17409809 @default.
- W3100960090 hasConcept C192241223 @default.