Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100968477> ?p ?o ?g. }
- W3100968477 endingPage "728" @default.
- W3100968477 startingPage "703" @default.
- W3100968477 abstract "Surrogate strategies are used widely for uncertainty quantification of groundwater models in order to improve computational efficiency. However, their application to dynamic multiphase flow problems is hindered by the curse of dimensionality, the saturation discontinuity due to capillarity effects, and the time-dependence of the multi-output responses. In this paper, we propose a deep convolutional encoder-decoder neural network methodology to tackle these issues. The surrogate modeling task is transformed to an image-to-image regression strategy. This approach extracts high-level coarse features from the high-dimensional input permeability images using an encoder, and then refines the coarse features to provide the output pressure/saturation images through a decoder. A training strategy combining a regression loss and a segmentation loss is proposed in order to better approximate the discontinuous saturation field. To characterize the high-dimensional time-dependent outputs of the dynamic system, time is treated as an additional input to the network that is trained using pairs of input realizations and of the corresponding system outputs at a limited number of time instances. The proposed method is evaluated using a geological carbon storage process-based multiphase flow model with a 2500-dimensional stochastic permeability field. With a relatively small number of training data, the surrogate model is capable of accurately characterizing the spatio-temporal evolution of the pressure and discontinuous CO2 saturation fields and can be used efficiently to compute the statistics of the system responses." @default.
- W3100968477 created "2020-11-23" @default.
- W3100968477 creator A5032359636 @default.
- W3100968477 creator A5036442264 @default.
- W3100968477 creator A5042608637 @default.
- W3100968477 creator A5059083339 @default.
- W3100968477 creator A5065709126 @default.
- W3100968477 date "2019-01-01" @default.
- W3100968477 modified "2023-10-10" @default.
- W3100968477 title "Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media" @default.
- W3100968477 cites W1528483814 @default.
- W3100968477 cites W1548310890 @default.
- W3100968477 cites W1574558736 @default.
- W3100968477 cites W1584790380 @default.
- W3100968477 cites W1604224450 @default.
- W3100968477 cites W1897549261 @default.
- W3100968477 cites W1903029394 @default.
- W3100968477 cites W1935773568 @default.
- W3100968477 cites W1974963628 @default.
- W3100968477 cites W2010028644 @default.
- W3100968477 cites W2018159038 @default.
- W3100968477 cites W2047459240 @default.
- W3100968477 cites W2048568378 @default.
- W3100968477 cites W2056310030 @default.
- W3100968477 cites W2069278207 @default.
- W3100968477 cites W2070335948 @default.
- W3100968477 cites W2096969866 @default.
- W3100968477 cites W2107129434 @default.
- W3100968477 cites W2114821552 @default.
- W3100968477 cites W2117122565 @default.
- W3100968477 cites W2133944044 @default.
- W3100968477 cites W2137983211 @default.
- W3100968477 cites W2138203931 @default.
- W3100968477 cites W2139247256 @default.
- W3100968477 cites W2143024042 @default.
- W3100968477 cites W2143591652 @default.
- W3100968477 cites W2162604832 @default.
- W3100968477 cites W2171413517 @default.
- W3100968477 cites W2194775991 @default.
- W3100968477 cites W2497530411 @default.
- W3100968477 cites W2529348500 @default.
- W3100968477 cites W2548313031 @default.
- W3100968477 cites W2549142589 @default.
- W3100968477 cites W2553111806 @default.
- W3100968477 cites W2608282032 @default.
- W3100968477 cites W2609185539 @default.
- W3100968477 cites W2626344215 @default.
- W3100968477 cites W2762902720 @default.
- W3100968477 cites W2767537294 @default.
- W3100968477 cites W2771066539 @default.
- W3100968477 cites W2784733489 @default.
- W3100968477 cites W2786232134 @default.
- W3100968477 cites W2789765289 @default.
- W3100968477 cites W2800542668 @default.
- W3100968477 cites W2962949934 @default.
- W3100968477 cites W2963446712 @default.
- W3100968477 cites W2963881378 @default.
- W3100968477 cites W2997857795 @default.
- W3100968477 cites W3106370744 @default.
- W3100968477 cites W3123551284 @default.
- W3100968477 doi "https://doi.org/10.1029/2018wr023528" @default.
- W3100968477 hasPublicationYear "2019" @default.
- W3100968477 type Work @default.
- W3100968477 sameAs 3100968477 @default.
- W3100968477 citedByCount "176" @default.
- W3100968477 countsByYear W31009684772019 @default.
- W3100968477 countsByYear W31009684772020 @default.
- W3100968477 countsByYear W31009684772021 @default.
- W3100968477 countsByYear W31009684772022 @default.
- W3100968477 countsByYear W31009684772023 @default.
- W3100968477 crossrefType "journal-article" @default.
- W3100968477 hasAuthorship W3100968477A5032359636 @default.
- W3100968477 hasAuthorship W3100968477A5036442264 @default.
- W3100968477 hasAuthorship W3100968477A5042608637 @default.
- W3100968477 hasAuthorship W3100968477A5059083339 @default.
- W3100968477 hasAuthorship W3100968477A5065709126 @default.
- W3100968477 hasBestOaLocation W31009684771 @default.
- W3100968477 hasConcept C108583219 @default.
- W3100968477 hasConcept C111030470 @default.
- W3100968477 hasConcept C111919701 @default.
- W3100968477 hasConcept C11413529 @default.
- W3100968477 hasConcept C118505674 @default.
- W3100968477 hasConcept C121332964 @default.
- W3100968477 hasConcept C154945302 @default.
- W3100968477 hasConcept C2779379648 @default.
- W3100968477 hasConcept C41008148 @default.
- W3100968477 hasConcept C62520636 @default.
- W3100968477 hasConcept C81363708 @default.
- W3100968477 hasConceptScore W3100968477C108583219 @default.
- W3100968477 hasConceptScore W3100968477C111030470 @default.
- W3100968477 hasConceptScore W3100968477C111919701 @default.
- W3100968477 hasConceptScore W3100968477C11413529 @default.
- W3100968477 hasConceptScore W3100968477C118505674 @default.
- W3100968477 hasConceptScore W3100968477C121332964 @default.
- W3100968477 hasConceptScore W3100968477C154945302 @default.
- W3100968477 hasConceptScore W3100968477C2779379648 @default.
- W3100968477 hasConceptScore W3100968477C41008148 @default.
- W3100968477 hasConceptScore W3100968477C62520636 @default.