Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100993489> ?p ?o ?g. }
- W3100993489 endingPage "141" @default.
- W3100993489 startingPage "129" @default.
- W3100993489 abstract "Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of Grelaud et al. (2009) who exhibited sufficient statistics on directly observed Gibbs random fields. But when the random field is latent, the sufficiency falls and we complement the set with geometric summary statistics. The general approach to construct these intuitive statistics relies on a clustering analysis of the sites based on the observed colors and plausible latent graphs. The efficiency of ABC model choice based on these statistics is evaluated via a local error rate which may be of independent interest. As a byproduct we derived an ABC algorithm that adapts the dimension of the summary statistics to the dataset without distorting the model selection." @default.
- W3100993489 created "2020-11-23" @default.
- W3100993489 creator A5032245151 @default.
- W3100993489 creator A5074203332 @default.
- W3100993489 creator A5078988449 @default.
- W3100993489 date "2014-09-20" @default.
- W3100993489 modified "2023-10-06" @default.
- W3100993489 title "Adaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields" @default.
- W3100993489 cites W1564947197 @default.
- W3100993489 cites W1569980211 @default.
- W3100993489 cites W1625253008 @default.
- W3100993489 cites W1680396847 @default.
- W3100993489 cites W1793259860 @default.
- W3100993489 cites W1978990433 @default.
- W3100993489 cites W1981885041 @default.
- W3100993489 cites W1988854998 @default.
- W3100993489 cites W1992930276 @default.
- W3100993489 cites W2000186700 @default.
- W3100993489 cites W2020673757 @default.
- W3100993489 cites W2034795216 @default.
- W3100993489 cites W2037139490 @default.
- W3100993489 cites W2045973738 @default.
- W3100993489 cites W2054287017 @default.
- W3100993489 cites W2067392831 @default.
- W3100993489 cites W2113662295 @default.
- W3100993489 cites W2114850187 @default.
- W3100993489 cites W2118661871 @default.
- W3100993489 cites W2118780960 @default.
- W3100993489 cites W2122809012 @default.
- W3100993489 cites W2123368367 @default.
- W3100993489 cites W2135267747 @default.
- W3100993489 cites W2135451472 @default.
- W3100993489 cites W2139812092 @default.
- W3100993489 cites W2146620998 @default.
- W3100993489 cites W2165991407 @default.
- W3100993489 cites W2166215379 @default.
- W3100993489 cites W28766783 @default.
- W3100993489 cites W2952324557 @default.
- W3100993489 cites W2963021623 @default.
- W3100993489 doi "https://doi.org/10.1007/s11222-014-9514-9" @default.
- W3100993489 hasPublicationYear "2014" @default.
- W3100993489 type Work @default.
- W3100993489 sameAs 3100993489 @default.
- W3100993489 citedByCount "11" @default.
- W3100993489 countsByYear W31009934892014 @default.
- W3100993489 countsByYear W31009934892015 @default.
- W3100993489 countsByYear W31009934892016 @default.
- W3100993489 countsByYear W31009934892018 @default.
- W3100993489 countsByYear W31009934892019 @default.
- W3100993489 countsByYear W31009934892020 @default.
- W3100993489 countsByYear W31009934892021 @default.
- W3100993489 crossrefType "journal-article" @default.
- W3100993489 hasAuthorship W3100993489A5032245151 @default.
- W3100993489 hasAuthorship W3100993489A5074203332 @default.
- W3100993489 hasAuthorship W3100993489A5078988449 @default.
- W3100993489 hasBestOaLocation W31009934892 @default.
- W3100993489 hasConcept C104317684 @default.
- W3100993489 hasConcept C105795698 @default.
- W3100993489 hasConcept C107673813 @default.
- W3100993489 hasConcept C112313634 @default.
- W3100993489 hasConcept C127716648 @default.
- W3100993489 hasConcept C130402806 @default.
- W3100993489 hasConcept C154945302 @default.
- W3100993489 hasConcept C158424031 @default.
- W3100993489 hasConcept C185592680 @default.
- W3100993489 hasConcept C188082640 @default.
- W3100993489 hasConcept C2776214188 @default.
- W3100993489 hasConcept C2779377595 @default.
- W3100993489 hasConcept C33923547 @default.
- W3100993489 hasConcept C41008148 @default.
- W3100993489 hasConcept C55493867 @default.
- W3100993489 hasConcept C73555534 @default.
- W3100993489 hasConceptScore W3100993489C104317684 @default.
- W3100993489 hasConceptScore W3100993489C105795698 @default.
- W3100993489 hasConceptScore W3100993489C107673813 @default.
- W3100993489 hasConceptScore W3100993489C112313634 @default.
- W3100993489 hasConceptScore W3100993489C127716648 @default.
- W3100993489 hasConceptScore W3100993489C130402806 @default.
- W3100993489 hasConceptScore W3100993489C154945302 @default.
- W3100993489 hasConceptScore W3100993489C158424031 @default.
- W3100993489 hasConceptScore W3100993489C185592680 @default.
- W3100993489 hasConceptScore W3100993489C188082640 @default.
- W3100993489 hasConceptScore W3100993489C2776214188 @default.
- W3100993489 hasConceptScore W3100993489C2779377595 @default.
- W3100993489 hasConceptScore W3100993489C33923547 @default.
- W3100993489 hasConceptScore W3100993489C41008148 @default.
- W3100993489 hasConceptScore W3100993489C55493867 @default.
- W3100993489 hasConceptScore W3100993489C73555534 @default.
- W3100993489 hasIssue "1" @default.
- W3100993489 hasLocation W31009934891 @default.
- W3100993489 hasLocation W31009934892 @default.
- W3100993489 hasLocation W31009934893 @default.
- W3100993489 hasLocation W31009934894 @default.
- W3100993489 hasLocation W31009934895 @default.
- W3100993489 hasLocation W31009934896 @default.
- W3100993489 hasLocation W31009934897 @default.
- W3100993489 hasLocation W31009934898 @default.
- W3100993489 hasLocation W31009934899 @default.