Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101126838> ?p ?o ?g. }
- W3101126838 endingPage "4937" @default.
- W3101126838 startingPage "4929" @default.
- W3101126838 abstract "Fine-grained object recognition concerns the identification of the type of an object among a large number of closely related sub-categories. Multisource data analysis, that aims to leverage the complementary spectral, spatial, and structural information embedded in different sources, is a promising direction towards solving the fine-grained recognition problem that involves low between-class variance, small training set sizes for rare classes, and class imbalance. However, the common assumption of co-registered sources may not hold at the pixel level for small objects of interest. We present a novel methodology that aims to simultaneously learn the alignment of multisource data and the classification model in a unified framework. The proposed method involves a multisource region attention network that computes per-source feature representations, assigns attention scores to candidate regions sampled around the expected object locations by using these representations, and classifies the objects by using an attention-driven multisource representation that combines the feature representations and the attention scores from all sources. All components of the model are realized using deep neural networks and are learned in an end-to-end fashion. Experiments using RGB, multispectral, and LiDAR elevation data for classification of street trees showed that our approach achieved 64.2% and 47.3% accuracies for the 18-class and 40-class settings, respectively, which correspond to 13% and 14.3% improvement relative to the commonly used feature concatenation approach from multiple sources." @default.
- W3101126838 created "2020-11-23" @default.
- W3101126838 creator A5003826893 @default.
- W3101126838 creator A5015927801 @default.
- W3101126838 creator A5051499142 @default.
- W3101126838 date "2019-07-01" @default.
- W3101126838 modified "2023-09-30" @default.
- W3101126838 title "Multisource Region Attention Network for Fine-Grained Object Recognition in Remote Sensing Imagery" @default.
- W3101126838 cites W1584663654 @default.
- W3101126838 cites W1799163428 @default.
- W3101126838 cites W1965309615 @default.
- W3101126838 cites W1967621805 @default.
- W3101126838 cites W2002392274 @default.
- W3101126838 cites W2060839488 @default.
- W3101126838 cites W2063396028 @default.
- W3101126838 cites W2089806346 @default.
- W3101126838 cites W2111787810 @default.
- W3101126838 cites W2120533946 @default.
- W3101126838 cites W2135550335 @default.
- W3101126838 cites W2419966649 @default.
- W3101126838 cites W2474275846 @default.
- W3101126838 cites W2513504913 @default.
- W3101126838 cites W2515306179 @default.
- W3101126838 cites W2565258258 @default.
- W3101126838 cites W2586898334 @default.
- W3101126838 cites W2591766052 @default.
- W3101126838 cites W2620858446 @default.
- W3101126838 cites W2737725206 @default.
- W3101126838 cites W2738232694 @default.
- W3101126838 cites W2748857187 @default.
- W3101126838 cites W2765739551 @default.
- W3101126838 cites W2765889263 @default.
- W3101126838 cites W2771056443 @default.
- W3101126838 cites W2798886737 @default.
- W3101126838 cites W2883080255 @default.
- W3101126838 cites W3105097574 @default.
- W3101126838 cites W3105730638 @default.
- W3101126838 cites W3153012724 @default.
- W3101126838 cites W2789914625 @default.
- W3101126838 doi "https://doi.org/10.1109/tgrs.2019.2894425" @default.
- W3101126838 hasPublicationYear "2019" @default.
- W3101126838 type Work @default.
- W3101126838 sameAs 3101126838 @default.
- W3101126838 citedByCount "30" @default.
- W3101126838 countsByYear W31011268382019 @default.
- W3101126838 countsByYear W31011268382020 @default.
- W3101126838 countsByYear W31011268382021 @default.
- W3101126838 countsByYear W31011268382022 @default.
- W3101126838 countsByYear W31011268382023 @default.
- W3101126838 crossrefType "journal-article" @default.
- W3101126838 hasAuthorship W3101126838A5003826893 @default.
- W3101126838 hasAuthorship W3101126838A5015927801 @default.
- W3101126838 hasAuthorship W3101126838A5051499142 @default.
- W3101126838 hasBestOaLocation W31011268382 @default.
- W3101126838 hasConcept C115961682 @default.
- W3101126838 hasConcept C138885662 @default.
- W3101126838 hasConcept C153083717 @default.
- W3101126838 hasConcept C153180895 @default.
- W3101126838 hasConcept C154945302 @default.
- W3101126838 hasConcept C173163844 @default.
- W3101126838 hasConcept C2776401178 @default.
- W3101126838 hasConcept C2777212361 @default.
- W3101126838 hasConcept C2781238097 @default.
- W3101126838 hasConcept C41008148 @default.
- W3101126838 hasConcept C41895202 @default.
- W3101126838 hasConcept C64876066 @default.
- W3101126838 hasConcept C75294576 @default.
- W3101126838 hasConcept C82990744 @default.
- W3101126838 hasConceptScore W3101126838C115961682 @default.
- W3101126838 hasConceptScore W3101126838C138885662 @default.
- W3101126838 hasConceptScore W3101126838C153083717 @default.
- W3101126838 hasConceptScore W3101126838C153180895 @default.
- W3101126838 hasConceptScore W3101126838C154945302 @default.
- W3101126838 hasConceptScore W3101126838C173163844 @default.
- W3101126838 hasConceptScore W3101126838C2776401178 @default.
- W3101126838 hasConceptScore W3101126838C2777212361 @default.
- W3101126838 hasConceptScore W3101126838C2781238097 @default.
- W3101126838 hasConceptScore W3101126838C41008148 @default.
- W3101126838 hasConceptScore W3101126838C41895202 @default.
- W3101126838 hasConceptScore W3101126838C64876066 @default.
- W3101126838 hasConceptScore W3101126838C75294576 @default.
- W3101126838 hasConceptScore W3101126838C82990744 @default.
- W3101126838 hasFunder F4320322421 @default.
- W3101126838 hasFunder F4320322626 @default.
- W3101126838 hasFunder F4320325520 @default.
- W3101126838 hasIssue "7" @default.
- W3101126838 hasLocation W31011268381 @default.
- W3101126838 hasLocation W31011268382 @default.
- W3101126838 hasLocation W31011268383 @default.
- W3101126838 hasLocation W31011268384 @default.
- W3101126838 hasLocation W31011268385 @default.
- W3101126838 hasOpenAccess W3101126838 @default.
- W3101126838 hasPrimaryLocation W31011268381 @default.
- W3101126838 hasRelatedWork W1966028303 @default.
- W3101126838 hasRelatedWork W2010380423 @default.
- W3101126838 hasRelatedWork W2012893378 @default.
- W3101126838 hasRelatedWork W2070651420 @default.
- W3101126838 hasRelatedWork W2100766099 @default.