Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101319477> ?p ?o ?g. }
- W3101319477 abstract "In the recent past, dialogue systems have gained immense popularity and have become ubiquitous. During conversations, humans not only rely on languages but seek contextual information through visual contents as well. In every task-oriented dialogue system, the user is guided by the different aspects of a product or service that regulates the conversation towards selecting the product or service. In this work, we present a multi-modal conversational framework for a task-oriented dialogue setup that generates the responses following the different aspects of a product or service to cater to the user’s needs. We show that the responses guided by the aspect information provide more interactive and informative responses for better communication between the agent and the user. We first create a Multi-domain Multi-modal Dialogue (MDMMD) dataset having conversations involving both text and images belonging to the three different domains, such as restaurants, electronics, and furniture. We implement a Graph Convolutional Network (GCN) based framework that generates appropriate textual responses from the multi-modal inputs. The multi-modal information having both textual and image representation is fed to the decoder and the aspect information for generating aspect guided responses. Quantitative and qualitative analyses show that the proposed methodology outperforms several baselines for the proposed task of aspect-guided response generation." @default.
- W3101319477 created "2020-11-23" @default.
- W3101319477 creator A5001530623 @default.
- W3101319477 creator A5085370631 @default.
- W3101319477 creator A5089625578 @default.
- W3101319477 date "2020-01-01" @default.
- W3101319477 modified "2023-10-02" @default.
- W3101319477 title "MultiDM-GCN: Aspect-guided Response Generation in Multi-domain Multi-modal Dialogue System using Graph Convolutional Network" @default.
- W3101319477 cites W1494910745 @default.
- W3101319477 cites W1533861849 @default.
- W3101319477 cites W1591706642 @default.
- W3101319477 cites W1902237438 @default.
- W3101319477 cites W1975879668 @default.
- W3101319477 cites W2016589492 @default.
- W3101319477 cites W2062989416 @default.
- W3101319477 cites W2095705004 @default.
- W3101319477 cites W2101105183 @default.
- W3101319477 cites W2154652894 @default.
- W3101319477 cites W2157331557 @default.
- W3101319477 cites W2183341477 @default.
- W3101319477 cites W2250539671 @default.
- W3101319477 cites W2558809543 @default.
- W3101319477 cites W2768661419 @default.
- W3101319477 cites W2785523195 @default.
- W3101319477 cites W2891732163 @default.
- W3101319477 cites W2897182555 @default.
- W3101319477 cites W2944887439 @default.
- W3101319477 cites W2948742685 @default.
- W3101319477 cites W2950009015 @default.
- W3101319477 cites W2951450739 @default.
- W3101319477 cites W2951980657 @default.
- W3101319477 cites W2952723239 @default.
- W3101319477 cites W2953071719 @default.
- W3101319477 cites W2953251345 @default.
- W3101319477 cites W2956125353 @default.
- W3101319477 cites W2962764403 @default.
- W3101319477 cites W2962814079 @default.
- W3101319477 cites W2962835968 @default.
- W3101319477 cites W2962883855 @default.
- W3101319477 cites W2963248455 @default.
- W3101319477 cites W2963287297 @default.
- W3101319477 cites W2963748384 @default.
- W3101319477 cites W2963789888 @default.
- W3101319477 cites W2963790827 @default.
- W3101319477 cites W2963963856 @default.
- W3101319477 cites W2964011461 @default.
- W3101319477 cites W2964588180 @default.
- W3101319477 cites W2969576497 @default.
- W3101319477 cites W2971261034 @default.
- W3101319477 cites W2972603547 @default.
- W3101319477 cites W2985891764 @default.
- W3101319477 cites W2988647680 @default.
- W3101319477 cites W3106274079 @default.
- W3101319477 doi "https://doi.org/10.18653/v1/2020.findings-emnlp.210" @default.
- W3101319477 hasPublicationYear "2020" @default.
- W3101319477 type Work @default.
- W3101319477 sameAs 3101319477 @default.
- W3101319477 citedByCount "11" @default.
- W3101319477 countsByYear W31013194772021 @default.
- W3101319477 countsByYear W31013194772022 @default.
- W3101319477 countsByYear W31013194772023 @default.
- W3101319477 crossrefType "proceedings-article" @default.
- W3101319477 hasAuthorship W3101319477A5001530623 @default.
- W3101319477 hasAuthorship W3101319477A5085370631 @default.
- W3101319477 hasAuthorship W3101319477A5089625578 @default.
- W3101319477 hasBestOaLocation W31013194771 @default.
- W3101319477 hasConcept C107457646 @default.
- W3101319477 hasConcept C132525143 @default.
- W3101319477 hasConcept C136264566 @default.
- W3101319477 hasConcept C136764020 @default.
- W3101319477 hasConcept C138885662 @default.
- W3101319477 hasConcept C154945302 @default.
- W3101319477 hasConcept C15744967 @default.
- W3101319477 hasConcept C162324750 @default.
- W3101319477 hasConcept C173853756 @default.
- W3101319477 hasConcept C175154964 @default.
- W3101319477 hasConcept C17744445 @default.
- W3101319477 hasConcept C185592680 @default.
- W3101319477 hasConcept C187736073 @default.
- W3101319477 hasConcept C188027245 @default.
- W3101319477 hasConcept C190954187 @default.
- W3101319477 hasConcept C199539241 @default.
- W3101319477 hasConcept C2524010 @default.
- W3101319477 hasConcept C2776359362 @default.
- W3101319477 hasConcept C2777200299 @default.
- W3101319477 hasConcept C2780378061 @default.
- W3101319477 hasConcept C2780451532 @default.
- W3101319477 hasConcept C2780586970 @default.
- W3101319477 hasConcept C33923547 @default.
- W3101319477 hasConcept C41008148 @default.
- W3101319477 hasConcept C41895202 @default.
- W3101319477 hasConcept C71139939 @default.
- W3101319477 hasConcept C77805123 @default.
- W3101319477 hasConcept C80444323 @default.
- W3101319477 hasConcept C90673727 @default.
- W3101319477 hasConcept C94625758 @default.
- W3101319477 hasConceptScore W3101319477C107457646 @default.
- W3101319477 hasConceptScore W3101319477C132525143 @default.
- W3101319477 hasConceptScore W3101319477C136264566 @default.
- W3101319477 hasConceptScore W3101319477C136764020 @default.