Matches in SemOpenAlex for { <https://semopenalex.org/work/W3101379481> ?p ?o ?g. }
- W3101379481 abstract "Low-resolution analog-to-digital converters (ADCs) have been considered as a practical and promising solution for reducing cost and power consumption in massive Multiple-Input-Multiple-Output (MIMO) systems. Unfortunately, low-resolution ADCs significantly distort the received signals, and thus make data detection much more challenging. In this paper, we develop a new deep neural network (DNN) framework for efficient and low-complexity data detection in low-resolution massive MIMO systems. Based on reformulated maximum likelihood detection problems, we propose two model-driven DNN-based detectors, namely OBMNet and FBMNet, for one-bit and few-bit massive MIMO systems, respectively. The proposed OBMNet and FBMNet detectors have unique and simple structures designed for low-resolution MIMO receivers and thus can be efficiently trained and implemented. Numerical results also show that OBMNet and FBMNet significantly outperform existing detection methods." @default.
- W3101379481 created "2020-11-23" @default.
- W3101379481 creator A5027364315 @default.
- W3101379481 creator A5033062249 @default.
- W3101379481 creator A5082404136 @default.
- W3101379481 date "2020-11-05" @default.
- W3101379481 modified "2023-09-27" @default.
- W3101379481 title "DNN-based Detectors for Massive MIMO Systems with Low-Resolution ADCs" @default.
- W3101379481 cites W1522301498 @default.
- W3101379481 cites W1763302039 @default.
- W3101379481 cites W1776974347 @default.
- W3101379481 cites W1831449718 @default.
- W3101379481 cites W1971443733 @default.
- W3101379481 cites W2016999686 @default.
- W3101379481 cites W2035720976 @default.
- W3101379481 cites W2054692642 @default.
- W3101379481 cites W2084304524 @default.
- W3101379481 cites W2086625681 @default.
- W3101379481 cites W2102431935 @default.
- W3101379481 cites W2103972037 @default.
- W3101379481 cites W2605537711 @default.
- W3101379481 cites W2776804321 @default.
- W3101379481 cites W2804075771 @default.
- W3101379481 cites W2884188086 @default.
- W3101379481 cites W2914927886 @default.
- W3101379481 cites W2918650740 @default.
- W3101379481 cites W2959068776 @default.
- W3101379481 cites W2964163499 @default.
- W3101379481 cites W2982604217 @default.
- W3101379481 cites W2991708646 @default.
- W3101379481 cites W2999502906 @default.
- W3101379481 cites W3013921837 @default.
- W3101379481 cites W3031023929 @default.
- W3101379481 cites W3045515209 @default.
- W3101379481 cites W3143251189 @default.
- W3101379481 hasPublicationYear "2020" @default.
- W3101379481 type Work @default.
- W3101379481 sameAs 3101379481 @default.
- W3101379481 citedByCount "1" @default.
- W3101379481 countsByYear W31013794812021 @default.
- W3101379481 crossrefType "posted-content" @default.
- W3101379481 hasAuthorship W3101379481A5027364315 @default.
- W3101379481 hasAuthorship W3101379481A5033062249 @default.
- W3101379481 hasAuthorship W3101379481A5082404136 @default.
- W3101379481 hasConcept C113775141 @default.
- W3101379481 hasConcept C11413529 @default.
- W3101379481 hasConcept C121332964 @default.
- W3101379481 hasConcept C127162648 @default.
- W3101379481 hasConcept C127313418 @default.
- W3101379481 hasConcept C127413603 @default.
- W3101379481 hasConcept C138268822 @default.
- W3101379481 hasConcept C154945302 @default.
- W3101379481 hasConcept C163258240 @default.
- W3101379481 hasConcept C207987634 @default.
- W3101379481 hasConcept C24326235 @default.
- W3101379481 hasConcept C2778422915 @default.
- W3101379481 hasConcept C2984118289 @default.
- W3101379481 hasConcept C3019883945 @default.
- W3101379481 hasConcept C3020199158 @default.
- W3101379481 hasConcept C41008148 @default.
- W3101379481 hasConcept C62520636 @default.
- W3101379481 hasConcept C62649853 @default.
- W3101379481 hasConcept C76155785 @default.
- W3101379481 hasConcept C79403827 @default.
- W3101379481 hasConcept C94915269 @default.
- W3101379481 hasConceptScore W3101379481C113775141 @default.
- W3101379481 hasConceptScore W3101379481C11413529 @default.
- W3101379481 hasConceptScore W3101379481C121332964 @default.
- W3101379481 hasConceptScore W3101379481C127162648 @default.
- W3101379481 hasConceptScore W3101379481C127313418 @default.
- W3101379481 hasConceptScore W3101379481C127413603 @default.
- W3101379481 hasConceptScore W3101379481C138268822 @default.
- W3101379481 hasConceptScore W3101379481C154945302 @default.
- W3101379481 hasConceptScore W3101379481C163258240 @default.
- W3101379481 hasConceptScore W3101379481C207987634 @default.
- W3101379481 hasConceptScore W3101379481C24326235 @default.
- W3101379481 hasConceptScore W3101379481C2778422915 @default.
- W3101379481 hasConceptScore W3101379481C2984118289 @default.
- W3101379481 hasConceptScore W3101379481C3019883945 @default.
- W3101379481 hasConceptScore W3101379481C3020199158 @default.
- W3101379481 hasConceptScore W3101379481C41008148 @default.
- W3101379481 hasConceptScore W3101379481C62520636 @default.
- W3101379481 hasConceptScore W3101379481C62649853 @default.
- W3101379481 hasConceptScore W3101379481C76155785 @default.
- W3101379481 hasConceptScore W3101379481C79403827 @default.
- W3101379481 hasConceptScore W3101379481C94915269 @default.
- W3101379481 hasLocation W31013794811 @default.
- W3101379481 hasOpenAccess W3101379481 @default.
- W3101379481 hasPrimaryLocation W31013794811 @default.
- W3101379481 hasRelatedWork W2145911207 @default.
- W3101379481 hasRelatedWork W2147301857 @default.
- W3101379481 hasRelatedWork W2588308058 @default.
- W3101379481 hasRelatedWork W2914581636 @default.
- W3101379481 hasRelatedWork W2936833480 @default.
- W3101379481 hasRelatedWork W2939443157 @default.
- W3101379481 hasRelatedWork W2999502906 @default.
- W3101379481 hasRelatedWork W3006760583 @default.
- W3101379481 hasRelatedWork W3009434745 @default.
- W3101379481 hasRelatedWork W3039679662 @default.
- W3101379481 hasRelatedWork W3042557208 @default.